Journal of South China University of Technology(Natural Science Edition) ›› 2025, Vol. 53 ›› Issue (9): 22-30.doi: 10.12141/j.issn.1000-565X.240609
• Computer Science & Technology • Previous Articles Next Articles
YUE Yongheng, ZHAO Zhihao
Received:2024-12-30
Online:2025-09-25
Published:2025-04-27
About author:岳永恒(1973—),男,博士,副教授,主要从事交通安全、控制理论及应用研究。E-mail: yueyyh@126.com
Supported by:CLC Number:
YUE Yongheng, ZHAO Zhihao. Lane Line Detection Algorithm Based on Deep Learning[J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(9): 22-30.
Table 3
Comparison of experimental results among six algorithms on CULane dataset"
| 算法 | F1 | NFP | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Normal | Crowd | Night | No Lane | Shadow | Arrow | Hlight | Curve | 综合 | Cross | |
| CurveLane-NAS[ | 88.30 | 68.60 | 66.20 | 47.90 | 68.00 | 82.50 | 63.20 | 66.00 | 71.4 | 2 817 |
| SCNN | 90.60 | 69.70 | 66.10 | 43.40 | 66.90 | 84.10 | 58.50 | 64.40 | 71.6 | 1 990 |
| R-18-E2E[ | 90.00 | 69.70 | 63.30 | 43.20 | 62.50 | 83.20 | 60.20 | 70.30 | 70.8 | 2 296 |
| SAD | 90.10 | 68.80 | 66.00 | 41.60 | 65.90 | 84.00 | 60.20 | 65.70 | 70.8 | 1 998 |
| UFLD18 | 87.70 | 66.00 | 62.10 | 40.20 | 62.80 | 81.00 | 58.40 | 57.90 | 68.4 | 1 743 |
| 文中算法 | 90.88 | 70.01 | 66.54 | 44.13 | 68.96 | 85.01 | 66.31 | 62.05 | 72.74 | 1 448 |
| [1] | HE Y, WANG H, ZHANG B .Color-based road detection in urban traffic scenes [J].IEEE Transactions on Intelligent Transportation Systems,2004,5(4):309-318. |
| [2] | YOO H, YANG U, SOHN K .Gradient-enhancing conversion for illumination-robust lane detection[J].IEEE Transactions on Intelligent Transportation Systems,2013,14(3):1083-1094. |
| [3] | GAIKWAD V, LOKHANDE S .Lane departure identification for advanced driver assistance [J].IEEE Tran-sactions on Intelligent Transportation Systems,2014,16(2):910-918. |
| [4] | NIU J, LU J, XU M,et al .Robust lane detection using two-stage feature extraction with curve fitting [J].Pattern Recognition,2016,59:225-233. |
| [5] | PAN X, SHI J, LUO P,et al .Spatial as deep:spatial CNN for traffic scene understanding[C]∥ Procee-dings of theThirty-Second AAAI Conference on Artificial Intelligence.New Orleans:AAAI,2018:7276-7283. |
| [6] | HOU Y, MA Z, LIU C,et al .Learning lightweight lane detection CNNs by self attention distillation[C]∥ Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:1013-1021. |
| [7] | ZHAO J, QIU Z, HU H,et al .HWLane:HW-Transformer for lane detection[J].IEEE Transactions on Intelligent Transportation Systems,2024,25(8):9321-9331. |
| [8] | NEVEN D, DE BRABANDERE B, GEORGOULIS S,et al .Towards end-to-end lane detection:an instance segmentation approach[C]∥ Proceedings of 2018 IEEE Intelligent Vehicles Symposium.Changshu:IEEE,2018:286-291. |
| [9] | WEN Y, YIN Y, RAN H .FlipNet:an attention-enhanced hierarchical feature flip fusion network for lane detection[J].IEEE Transactions on Intelligent Transportation Systems,2024,25(8):8741-8750. |
| [10] | TABELINI L, BERRIEL R, PAIXAO T M,et al .PolyLaneNet:lane estimation via deep polynomial regression[C]∥ Proceedings of 2020 the 25th Inter-national Conference on Pattern Recognition.Milan:IEEE,2021: 6150-6156. |
| [11] | LIU R, YUAN Z, LIU T,et al .End-to-end lane shape prediction with transformers[C]∥ Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision.Waikoloa:IEEE,2021:3693-3701. |
| [12] | FENG Z, GUO S, TAN X,et al .Rethinking efficient lane detection via curve modeling[C]∥ Procee-dings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:17041-17049. |
| [13] | YOO S, LEE H S, MYEONG H,et al .End-to-end lane marker detection via row-wise classification[C]∥ Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Sea-ttle:IEEE,2020:4335-4343. |
| [14] | QIN Z, WANG H, LI X .Ultra fast structure-aware deep lane detection[C]∥ Proceedings of the 16th European Conference on Computer Vision.Glasgow:Springer,2020:276-291. |
| [15] | LIU L, CHEN X, ZHU S,et al .CondLaneNet:a top-to-down lane detection framework based on conditional convolution[C]∥ Proceedings of 2021 IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:3753-3762. |
| [16] | LIU S, QI L, QIN H,et al .Path aggregation network for instance segmentation[C]∥ Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:8759-8768. |
| [17] | YANG L, ZHANG R Y, LI L,et al .SimAM:a simple,parameter-free attention module for convolutional neural networks[C]∥ Proceedings of the 38th International Conference on Machine Learning.Wi-lliamstown:ML Research Press,2021:11863-11874. |
| [18] | HE K, ZHANG X, REN S,et al .Deep residual learning for image recognition[C]∥ Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778. |
| [19] | LIN T Y, DOLLÁR P, GIRSHICK R,et al .Feature pyramid networks for object detection[C]∥ Procee-dings of IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:936-9442125. |
| [20] | CHOLLET F .Xception:deep learning with depthwise separable convolutions[C]∥ Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Re-cognition.Honolulu:IEEE,2017:1800-1807. |
| [21] | LIU S, HUANG D, WANG Y .Learning spatial fusion for single-shot object detection[EB/OL].(2019-11-21)[2024-12-10].. |
| [22] | CHEN L C, PAPANDREOU G, SCHROFF F,et al .Rethinking atrous convolution for semantic image segmentation[EB/OL].(2017-12-05)[2024-12-10].. |
| [23] | WANG Q, WU B, ZHU P,et al .ECA-Net:efficient channel attention for deep convolutional neural networks[C]∥ Proceedings of the IEEE/CVF confe-rence on computer vision and pattern recognition.Seattle:IEEE,2020:11531-11539. |
| [24] | TuSimple .TuSimple lane detection benchmark[EB/OL].(2017-7-17)[2024-12-10].. |
| [25] | TABELINI L, BERRIEL R, PAIXÃO T M,et al .Keep your eyes on the lane:real-time attention-guided lane detection[C]∥ Proceedings of 2021 IEEE/CVF COnference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:294-302. |
| [26] | GHAFOORIAN M, NUGTEREN C, BAKA N,et al .EL-GAN:embedding loss driven generative adversarial networks for lane detection[C]∥ Proceedings of the 15th European Conference on Computer Vision Workshops.Munich:Springer,2018:256-272. |
| [27] | XU H, WANG S, CAI X,et al .CurveLane-NAS:unifying lane-sensitive architecture search and adaptive point blending[C]∥ Proceedings of the 16th European Conference on Computer Vision.Glasgow:Springer,2020:689-704. |
| [28] | WANG J, MA Y, HUANG S,et al .A keypoint-based global association network for lane detection [C]∥ Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:1382-1391. |
| [29] | HONDA H, UCHIDA Y .CLRerNet:improving confidence of lane detection with LaneIoU[C]∥ Procee-dings of 2024 IEEE/CVF Winter Conference on Applications of Computer Vision.Waikoloa:IEEE,2024:1165-1174. |
| [1] | CHEN Cheng, WANG Miao, WANG Xinyao, GAO Zhiming, ZHOU Xuan, YAN Junwei. Multi-Working Condition Energy Consumption Anomaly Detection Method for Office Building Lighting Sockets Based on LSTM-AE [J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(9): 117-126. |
| [2] | ZUO Bin, DONG Tianhang, ZHANG Zehui, WANG Huajun, HUO Weiwei, GONG Wenfeng, CHENG Junsheng. Proton Exchange Membrane Fuel Cell Fault Prediction Method Based on Deep Learning [J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(7): 21-30. |
| [3] | HU Guanghua, DAI Zhigang, WANG Qinghui. Machining Feature Recognition Method of B-Rep Model Based on Graph Neural Network [J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(5): 20-31. |
| [4] | HU Xizhi, CUI Bofei, WANG Qin, LIU Hong. Visual SLAM Algorithm Based on Memory Parking Scene [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(6): 1-11. |
| [5] | LIU Hao, YUAN Hui, CHEN Chen, GAO Wei. Point Cloud Geometry Coding Framework Based on Sampling [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(6): 148-156. |
| [6] | YANG Chunling, LIANG Ziwen. Feature-Domain Proximal High-Dimensional Gradient Descent Network for Image Compressed Sensing [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(3): 119-130. |
| [7] | ZHENG Juanyi, DONG Jiahao, ZHANG Qingjue, et al. Reconfigurable Intelligence Surface Channel Estimation Algorithm Based on RDN [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(3): 102-111. |
| [8] | ZHOU Lang, FAN Kun, QU Hua, et al. Forest Fire Recognition by Improved EfficientNet-E Model Based on ECA Attention Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(2): 42-49. |
| [9] | CHEN Qiong, FENG Yuan, LI Zhiqun, YANG Yong. Semantic-Visual Consistency Constraint Network for Zero-Shot Image Semantic Segmentation [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(10): 41-50. |
| [10] | LIU Weipeng, LI Xu, REN Ziwen, QI Yedong. Algorithm for Multiscale Residual Deformable Lung CT Image Registration [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(10): 135-145. |
| [11] | HU Guanghua, TU Qianxi. Surface Defect Detection Method for Industrial Products Based on Photometric Stereo and Dual Stream Feature Fusion Network [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(10): 112-123. |
| [12] | LI Fang, GUO Weisen, ZHANG Ping, et al.. Prediction Technique for Remaining Useful Life of Bearing Based on Spatial-Temporal Dual Cell State [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 69-81. |
| [13] | SU Jindian, YU Shanshan, HONG Xiaobin. A Self-Supervised Pre-Training Method for Chinese Spelling Correction [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 90-98. |
| [14] | LI Jiachun, LI Bowen, LIN Weiwei. AdfNet: An Adaptive Deep Forgery Detection Network Based on Diverse Features [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 82-89. |
| [15] | GUO Enqiang, FU Xinsha. Dropped Object Detection Method Based on Feature Similarity Learning [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 30-41. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||