Journal of South China University of Technology(Natural Science Edition) ›› 2025, Vol. 53 ›› Issue (9): 31-47.doi: 10.12141/j.issn.1000-565X.250003
• Computer Science & Technology • Previous Articles Next Articles
WANG Qingrong1, GAO Huanyi1, ZHU Changfeng2, HE Runtian2, MU Zhuangzhuang1
Received:2025-01-04
Online:2025-09-25
Published:2025-03-21
Contact:
高桓伊(2001—),男,硕士生,主要从事深度学习、交通拥堵预测研究。
E-mail:gaohuanyi1@163.com
About author:王庆荣(1977—),女,教授,主要从事智能交通、应急物流研究。E-mail: 329046272@qq.com
Supported by:CLC Number:
WANG Qingrong, GAO Huanyi, ZHU Changfeng, HE Runtian, MU Zhuangzhuang. Traffic Congestion Prediction Based on Dynamic Adaptive Gated Graph Convolutional Networks[J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(9): 31-47.
Table 1
Comparison of experimental results of various models on PeMS08 dataset under different durations"
| 时长/min | 模型 | RMSE/10-2 | MAPE/% | MAE/10-2 | R2 |
|---|---|---|---|---|---|
| 15 | HA | 10.490 | 4.932 | 5.981 | 0.321 |
| SVR | 8.593 | 4.780 | 5.399 | 0.698 | |
| DCRNN | 6.303 | 2.810 | 3.198 | 0.730 | |
| STGCN | 6.190 | 2.802 | 3.014 | 0.758 | |
| Graph WaveNet | 5.838 | 2.229 | 2.723 | 0.774 | |
| STTF | 4.452 | 1.421 | 1.893 | 0.895 | |
| VMD-AGCGRN | 4.053 | 1.140 | 1.372 | 0.907 | |
| GSTCN | 3.739 | 0.933 | 1.195 | 0.914 | |
| 30 | HA | 10.586 | 4.930 | 5.993 | 0.320 |
| SVR | 9.601 | 4.843 | 5.547 | 0.638 | |
| DCRNN | 6.946 | 3.343 | 3.611 | 0.683 | |
| STGCN | 6.874 | 3.228 | 3.448 | 0.692 | |
| Graph WaveNet | 6.641 | 2.572 | 3.152 | 0.725 | |
| STTF | 4.916 | 1.782 | 2.127 | 0.852 | |
| VMD-AGCGRN | 4.751 | 1.452 | 1.918 | 0.866 | |
| GSTCN | 4.476 | 1.175 | 1.501 | 0.874 | |
| 60 | HA | 10.675 | 4.926 | 6.011 | 0.317 |
| SVR | 10.335 | 5.761 | 6.288 | 0.561 | |
| DCRNN | 7.849 | 3.414 | 3.804 | 0.659 | |
| STGCN | 8.021 | 3.542 | 3.967 | 0.647 | |
| Graph WaveNet | 7.494 | 3.034 | 3.709 | 0.678 | |
| STTF | 5.544 | 2.234 | 2.489 | 0.803 | |
| VMD-AGCGRN | 5.387 | 1.975 | 2.247 | 0.814 | |
| GSTCN | 5.286 | 1.579 | 1.994 | 0.825 |
Table 2
Comparison of experimental results of various models on PeMS04 Dataset under different prediction durations"
| 时长/min | 模型 | RMSE/10-2 | MAPE/% | MAE/10-2 | R2 |
|---|---|---|---|---|---|
| 15 | HA | 11.762 | 5.701 | 6.934 | 0.231 |
| SVR | 9.573 | 4.780 | 5.399 | 0.573 | |
| DCRNN | 7.872 | 3.256 | 3.821 | 0.705 | |
| STGCN | 7.983 | 3.438 | 3.998 | 0.691 | |
| Graph WaveNet | 7.618 | 3.048 | 3.787 | 0.718 | |
| STTF | 5.069 | 1.618 | 2.147 | 0.853 | |
| VMD-AGCGRN | 4.677 | 1.426 | 1.635 | 0.872 | |
| GSTCN | 4.472 | 1.115 | 1.448 | 0.891 | |
| 30 | HA | 11.767 | 5.702 | 6.936 | 0.231 |
| SVR | 10.496 | 4.314 | 4.966 | 0.558 | |
| DCRNN | 8.668 | 3.774 | 4.372 | 0.616 | |
| STGCN | 8.731 | 3.996 | 4.416 | 0.602 | |
| Graph WaveNet | 8.201 | 3.378 | 4.194 | 0.638 | |
| STTF | 5.793 | 1.849 | 2.454 | 0.819 | |
| VMD-AGCGRN | 5.583 | 1.650 | 2.091 | 0.824 | |
| GSTCN | 5.224 | 1.424 | 1.839 | 0.849 | |
| 60 | HA | 11.774 | 5.704 | 6.939 | 0.232 |
| SVR | 11.340 | 4.964 | 5.726 | 0.486 | |
| DCRNN | 9.188 | 4.019 | 4.458 | 0.588 | |
| STGCN | 9.364 | 4.187 | 4.683 | 0.579 | |
| Graph WaveNet | 8.640 | 3.734 | 4.612 | 0.605 | |
| STTF | 6.533 | 2.079 | 2.735 | 0.770 | |
| VMD-AGCGRN | 6.364 | 1.991 | 2.572 | 0.787 | |
| GSTCN | 6.054 | 1.818 | 2.330 | 0.802 |
| [1] | LI L, DAI F, HUANG B,et al .ST3DRNet:attention-based spatio-temporal 3D residual neural networks for traffic congestion prediction[J].Sensors,2024,24(4):1261/1-19. |
| [2] | SHAHRIARI S, GHASRI M, SISSON S A,et al .Ensemble of ARIMA:combining parametric and bootstrapping technique for traffic flow prediction[J].Transportmetrica A:Transport Science,2020,16(3):1552-1573. |
| [3] | PRIAMBODO B, AHMAD A, KADIR R A .Predicting traffic flow propagation based on congestion at neighbouring roads using hidden Markov model[J].IEEE Access,2021,9: 85933-85946. |
| [4] | ZHANG Z, HAN Y, PENG T,et al .A comprehensive spatio-temporal model for subway passenger flow prediction[J].ISPRS International Journal of Geo-Information,2022,11(6):341-341. |
| [5] | ZHANG H, JIANG C, YANG L .Forecasting traffic congestion status in terminal areas based on support vector machine[J].Advances in Mechanical Engineering,2016,8(9):1-11. |
| [6] | YU H, JI N, REN Y,et al .A special event-based K-nearest neighbor model for short-term traffic state prediction[J].IEEE Access,2019,7:81717-81729. |
| [7] | 姚俊峰,何瑞,史童童,等 .基于机器学习的交通流预测方法综述[J].交通运输工程学报,2023,23(3):44-67. |
| YAO Jun-feng, HE Rui, SHI Tong-tong,et al .Review on machine learning-based traffic flow prediction methods[J].Journal of Traffic and Transportation Engineering,2023,23(3):44-67. | |
| [8] | 梁秀霞,夏曼曼,何月阳,等 .基于时空多头图注意力网络的交通流预测[J].电子学报,2024,52(2):500-509. |
| LIANG Xiu-xia, XIA Man-man, HE Yue-yang,et al .Traffic flow prediction based on spatio-temporal multi-head graph attention network[J].Acta Electronica Sinica,2024,52(2):500-509. | |
| [9] | YU B, YIN H, ZHU Z .Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting [C]∥ Proceedings of the 27th International Joint Conference on Artificial Intelligence.Stockholm:International Joint Conferences on Artificial Intelligence Organization,2018:3634-3640. |
| [10] | LI Y, YU R, SHAHABI C,et al .Diffusion convolutional recurrent neural network:data-driven traffic forecasting[C]∥ Proceedings of the 6th International Conference on Learning Representations.Vancouver:OpenReview.net,2018:1-10. |
| [11] | WU Z, PAN S, LONG G,et al .Graph WaveNet for deep spatial temporal graph modeling[C]∥ Proceedings of the 28th International Joint Conference on Artificial Intelligence.Macao:ACM,2019:1907-1913. |
| [12] | 贺文武,裴博彧,李雅婷,等 .基于双向自适应门控图卷积网络的交通流预测[J].交通运输系统工程与信息,2023,23(1):187-197. |
| HE Wen-wu, PEI Bo-yu, LI Ya-ting,et al .Traffic flow forecasting based on bi-directional adaptive gating graph convolutional networks[J].Journal of Transportation Systems Engineering and Information Technology,2023,23(1):187-197. | |
| [13] | 崔建勋,要甲,赵泊媛 .基于深度学习的短期交通流预测方法综述[J].交通运输工程学报,2024,24(2):50-64. |
| CUI Jian-xun, YAO Jia, ZHAO Bo-yuan .Review on short-term traffic flow prediction methods based on deep learning[J].Journal of Traffic and Transportation Engineering,2024,24(2):50-64. | |
| [14] | WANG X, ZENG R, ZOU F,et al .STTF:an efficient transformer model for traffic congestion prediction[J].International Journal of Computational Intelligence Systems,2023,16(1):1-16. |
| [15] | 张玺君,余光杰,崔勇,等 .基于聚类算法和图神经网络的短时交通流预测[J].吉林大学学报(工学版),2024,54(6):1593-1600. |
| ZHANG Xi-jun, YU Guang-jie, CUI Yong,et al .Short-term traffic flow prediction based on clustering algorithm and graph neural network[J].Journal of Jilin University(Engineering and Technology Edition),2024,54(6):1593-1600. | |
| [16] | BAI S, KOLTER J Z, KOLTUN V .An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL].(2018-03-04)[2024-11-06].. |
| [17] | HU Z, SHAO F, SUN R .A new perspective on traffic flow prediction:a graph spatial-temporal network with complex network information[J].Electronics,2022,11:2432/1-22. |
| [18] | GUO X, KONG X, XING W,et al .Adaptive graph generation based on generalized pagerank graph neural network for traffic flow forecasting[J].Applied Intelligence,2023,53(24):30971- 30986. |
| [19] | Caltrans.Caltrans performance measurement system [EB/OL].(2024-02-25)[2025-03-17].. |
| [20] | WANG Q, CHEN X, ZHU C,et al .Short-term traffic flow prediction based on the SGA-KGCN-LSTM model[J].Engineering Letters,2023,31(3):1221-1235. |
| [21] | SMITH B L, WILLIAMS B M, OSWALD R K .Comparison of parametric and nonparametric models for traffic flow forecasting[J].Transportation Research Part C:Emerging Technologies,2002,10(4):303-321. |
| [22] | LIN G, LIN A, GU D .Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient[J].Information Sciences,2022, 608:517-531. |
| [23] | 龚循强,邱万锦,吕开云,等 .变分模态分解与自适应图卷积门控循环网络的交通流量组合预测模型[J].武汉大学学报(信息科学版),2024,49(12):2329-2341. |
| GONG Xunqiang, QIU Wanjin, Kaiyun LÜ,et al .A combined traffic flow prediction model based on variational mode decomposition and adaptive graph convolutional gated recurrent network[J].Geomatics and Information Science of Wuhan University,2024,49(12):2329-2341. | |
| [24] | 王庆荣,慕壮壮,朱昌锋,等 .基于HDNNF-CAF的短时交通流预测研究[J].计算机工程与应用,2025,61(15): 318-328. |
| WANG Qingrong, MU Zhuangzhuang, ZHU Changfeng,et al .Research on short-term traffic flow prediction based on HDNNF-CAF[J].Computer Engineering and Applications,2025,61(15):318-328. | |
| [25] | MIRJALILI S, MIRJALILI S M, LEWIS A .Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61. |
| [26] | 薛建凯 .一种新型的群智能优化技术的研究与应用[D].上海:东华大学,2020. |
| [27] | ARTHUR D, VASSILVITSKII S .K-means++:the advantages of careful seeding[C]∥ Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms.New Orleans:ACM,2007:1027-1035. |
| [28] | DAVIES D L, BOULDIN D W .A cluster separation measure[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,1(2):224-227. |
| [29] | CALINSKI T, HARABASZ J .A dendrite method for cluster analysis[J].Communications in Statistics:Theory and Methods,1974,3(1):1-27. |
| [1] | XIE Kun, XING Xinyuan, DONG Honghui, DONG Chunjiao, CHEN Yuanduo. Method for Workplace and Residence Identification and Travel Activity Classification Driven by Trajectory Data [J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(6): 131-139. |
| [2] | CAO Ruifen, HU Weiling, LI Qiangsheng, BIN Yannan, ZHENG Chunhou. Prediction Method of IL-6 Inducing Peptides Based on Graph Neural Network [J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(5): 109-117. |
| [3] | HU Guanghua, DAI Zhigang, WANG Qinghui. Machining Feature Recognition Method of B-Rep Model Based on Graph Neural Network [J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(5): 20-31. |
| [4] | CAI Xiaodong, ZHOU Qingsong, YE Qing. Social Recommendation Model Based on Dynamic Neighborhood Sampling [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(2): 32-41. |
| [5] | LIN Peiqun, GONG Minping, ZHOU Chuhao. User Portrait Method of Freeway Freight Car for Risk Identification of Freight Transportation [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 1-9. |
| [6] | ZHAO Rongchao, WU Baili, CHEN Zhuyun, et al. Graph Neural Network for Fault Diagnosis with Multi-Scale Time-Spatial Information Fusion Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(12): 42-52. |
| [7] | XU Lunhui, YU Jiaxin, PEI Mingyang, et al. Repositioning Strategy for Ride-Hailing Vehicles Based on Geometric Road Network Structure and Reinforcement Learning [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(10): 99-109. |
| [8] | LU Yiqin, PAN Zhoushuang, ZHANG Yang, et al. Knowledge Graph Completion Method Based on Interactively Connected Graph Attention Network [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(12): 13-19. |
| [9] | CAI Xiaodong, ZENG Zhiyang . AFGSRec: A Social Recommendation Model Based on Adaptive Fusion of Global Collaborative Features [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(12): 71-79. |
| [10] | LIU Xiaolan, SHI Zongyu, YE Zehui, et al. Anchor Graph Based Low-Rank Incomplete Multi-View Subspace Clustering [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(12): 60-70. |
| [11] | DU Qiliang, XIANG Zhaoyi, TIAN Lianfang, et al. Two-Stream Adaptive Attention Graph Convolutional Networks for Action Recognition [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(12): 20-29. |
| [12] | ZHENG Sifan, WANG Weixing, HE Zhanhua, et al. Research on Swing Amplitude Detection of Automobile Wiper with Two Granularity Optical Flow Manifold Learning#br# [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(1): 123-132. |
| [13] | CHEN Weiya PAN Xin FANG Xiaoping. Short-term Prediction of Passenger Flow on Bus Routes Based on K-means Clustering Combination Models [J]. Journal of South China University of Technology(Natural Science Edition), 2019, 47(4): 83-89,113. |
| [14] | Li Wei Huyan Ju Sha Ai-min Sun Zhao-yun Hao Xue-li . Pavement Crack Detection Based on Two - Scale Clustering Algorithm and 3D Data#br# [J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(8): 99-105. |
| [15] | Wang Li- na Chen Xiao- hong. GK Clustering Model Based on Optimal Initial Clustering Center of AFS [J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(9): 65-69. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||