1 |
HONG Y Z, YU X G, HE N,et al .Faspell:A fast,adaptable,simple,powerful Chinese spell checker based on dae-decoder paradigm [C]∥Proceedings of the 5th Workshop on Noisy User-Generated Text (W-NUT 2019).Hong Kong:Association for Computational Linguistics,2019:160-169.
|
2 |
WANG D M,TAY Y, ZHONG L .Confusionset-guided pointer networks for Chinese spelling check[C]∥Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:Association for Computational Linguistics,2019:5780-5785.
|
3 |
ZHANG S, HUANG H, LIU J,et al .Spelling error correction with soft-masked BERT [C]∥Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:Association for Computational Linguistics,2020:882-890.
|
4 |
LI C W, CHEN J J, CHANG J S .Chinese spelling check based on neural machine translation [C]∥Proceedings of the 32nd Pacific Asia Conference on Language,Information and Computation.Stroudsburg:Association for Computational Linguistics,2018:367-375.
|
5 |
VASWANI A, NARASIMHAN K, SALIMANS T,et al .Attention is all you need[C]∥Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017).California:MIT Press,2017:5998-6008.
|
6 |
DEVLIN J, CHANG M W, LEE K,et al .BERT:Pre-training of deep bidirectional transformers for language understanding [C]∥Proceedings of NAACL-HLT 2109.Minnesota:Association for Computational Linguistics,2019:4171-4186.
|
7 |
CHENG X Y, XU W D, CHEN K L .SpellGCN:Incorporating phonological and visual similarities into language models for Chinese spelling check [C]∥Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:Association for Computational Linguistics,2020:871-881.
|
8 |
WANG B X, CHE W X, WU D Y,et al .Dynamic connected networks for Chinese spelling check[C]∥Proceedings of the Findings of the Association for Computational Linguistics:ACL-IJCNLP 2021.Stroudsburg:Association for Computational Linguistics,2021:2437-2446.
|
9 |
LI J, WU G S, YIN D F .DCSpell:A detector-corrector framework for Chinese spelling error correction [C]∥Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information.NY:ACM Press,2021:1870-1874.
|
10 |
LIU S J, YANG T, YUE T C .PLOME:Pre-training with misspelled knowledge for Chinese spelling correction [C]∥Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.Stroudsburg:Association for Computational Linguistics,2021:2991-3000.
|
11 |
LI H, LI J J, JIANG W W,et al .HMOSpell:Phonological and morphological knowledge guided Chinese spelling check [C]∥Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.Stroudsburg:Association for Computational Linguistics,2021:5958-5967.
|
12 |
XU H D, LI Z, ZHOU Q,et al .Read,listen,and see:Leveraging multimodal information helps Chinese spell checking [C]∥Proceedings of the Findings of the Association for Computational Linguistics:ACL-IJCNLP 2021.Stroudsburg:Association for Computational Linguistics,2021:716-728.
|
13 |
LIU Y H,OTT M, GOYAL N,et al .RoBERTa:A robustly optimized BERT pretraining approach [EB/OL].(2019-07-26)[2023-01-05]..
|
14 |
CUI Y M, CHE W X, LIU T,et al .Pre-training with whole word masking for Chinese bert [J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2021,29:3504-3514.
|
15 |
段建勇,袁阳,王昊 .基于Transformer局部信息及语法增强架构的中文拼写纠错方法[J].北京大学学报(自然科学版),2021,57(1):61-67.
|
|
DUAN Jianyong, YUAN Yang, WANG Hao .Chinese spelling correction method based on transformer local information and syntax enhancement architecture [J].Acta Scientiarum Naturalium Universitatis Pekinensis(Natural Science),2021,57(1):61-67.
|
16 |
刘哲,殷成凤,李天瑞 .基于BERT和多特征融合嵌入的中文拼写检查[J].计算机科学,2023,50(3):282-290.
|
|
LIU Zhe, YIN Chengfeng, LI Tianrui .Chinese spelling check based on BERT and multi-feature fusion embedding [J].Computer Science,2023,50(3):282-290.
|
17 |
LIU C L, LAI M H, TIEN K W,et al .Visually and phonologically similar characters in incorrect Chinese words:Analyses,identification,and applications [J].ACM Transactions on Asian Language Information Processing,2011,10(2):1-10,39.
|
18 |
ZHANG R Q, PANG C, ZHANG C Q,et al .Correcting Chinese spelling errors with phonetic pre-training [C]∥Proceedings of the Findings of the Association for Computational Linguistics:ACL-IJCNLP 2021.Stroudsburg:Association for Computational Linguistics,2021:2250-2261.
|
19 |
JI T, YAN H, QIU X P .SpellBERT:A lightweight pretrained model for Chinese spelling check [C]∥ Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing(EMNLP 2021).Stroudsburg:Association for Computational Linguistics,2021:3544-3551.
|
20 |
LAN Z Z, CHEN M D, GOODMAN S,et al .ALBERT:A lite BERT for self-supervised learning of language representations [EB/OL].(2020-03-09)[2023-01-25]..
|
21 |
WANG D M, SONG Y, LI J,et al .A hybrid approach to automatic corpus generation for Chinese spelling check [C]∥Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Stroudsburg:Association for Computational Linguistics,2018:2517-2527.
|
22 |
WU S H, LIU C L, LEE L H .Chinese spelling check evaluation at SIGHAN bake-off 2013 [C]∥Proceedings of the Seventh SIGHAN Workshop on Chinese Language Processing.Nagoya:Asian Federation of Natural Language Processing,2013:35-42.
|
23 |
YU L C, LEE L H, TSENG Y H,et al .Overview of SIGHAN 2014 bake-off for Chinese spelling check [C]∥Proceedings of the 3rd CIPS-SIGHAN Joint Conference on Chinese Language Processing (CLP’14).Wuhan:Association for Computational Linguistics,2014:126-132.
|
24 |
TSENG Y H, LEE L H, CHANG L P,et al .Introduction to Sighan 2015 bake-off for Chinese spelling check [C]∥Proceedings of the Eighth SIGHAN Workshop on Chinese Language Processing.Beijing:Association for Computational Linguistics,2015:32-37.
|