Journal of South China University of Technology(Natural Science Edition) ›› 2024, Vol. 52 ›› Issue (3): 119-130.doi: 10.12141/j.issn.1000-565X.230101
• Electronics, Communication & Automation Technology • Previous Articles Next Articles
YANG Chunling LIANG Ziwen
Received:
2023-03-10
Online:
2024-03-25
Published:
2023-05-29
About author:
杨春玲(1970-),女,博士,教授,主要从事图像/视频压缩编码、图像质量评价研究。E-mail: eeclyang@scut.edu.cn
Supported by:
the Natural Science Foundation of Guangdong Province(2017A030311028,2019A1515011949)
CLC Number:
YANG Chunling, LIANG Ziwen. Feature-Domain Proximal High-Dimensional Gradient Descent Network for Image Compressed Sensing[J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(3): 119-130.
Table 1
Average PSNR/SSIM comparison of reconstructed images on Set11 and BSD68 of different algorithms"
数据集 | 方法 | PSNR/SSIM | ||||
---|---|---|---|---|---|---|
r=0.01 | r=0.05 | r=0.10 | r=0.30 | r=0.50 | ||
Set11 | CSNet+ | 21.02/0.556 6 | 25.86/0.784 6 | 28.34/0.850 8 | 34.30/0.949 0 | 38.52/0.974 9 |
NL-CSNet | 21.96/0.600 5 | —/— | 30.05/0.899 5 | 35.68/0.960 6 | —/— | |
MR-CSGAN | 21.49/0.592 1 | —/— | 29.37/0.877 4 | —/— | —/— | |
AMP-Net | 20.20/0.542 5 | 26.17/0.812 8 | 29.40/0.887 6 | 36.03/0.956 8 | 40.34/0.982 1 | |
OPINE-Net+ | 20.02/0.536 2 | 26.36/0.818 6 | 29.81/0.890 4 | 36.04/0.960 0 | 40.19/0.980 0 | |
FSOINet | 21.73/0.593 7 | 27.36/0.841 5 | 30.44/0.901 8 | 37.00/0.966 5 | 41.08/0.983 2 | |
MADUN | —/— | —/— | 29.91/0.898 6 | 36.94/0.967 6 | 40.77/0.983 2 | |
DGUNet+ | —/— | 30.93/0.908 8 | —/— | 41.24/0.983 7 | ||
DUDONet | 21.64/0.594 4 | 27.05/0.838 0 | 30.13/0.900 7 | 36.55/0.965 9 | 40.82/0.983 6 | |
DPC-DUN | —/— | —/— | 29.40/0.879 8 | 35.88/0.957 0 | 39.84/0.977 8 | |
LG-Net | 22.14/— | —/— | 30.71/— | 37.15/— | 41.32/— | |
FPHGD-Tiny | 22.02/0.602 9 | 27.67/0.847 5 | 30.84/0.906 4 | 37.30/0.968 1 | 41.27/0.983 8 | |
FPHGD-Net | 22.12/ | |||||
FHPGD-Plus | 22.53/0.6348 | 28.35/0.8614 | 31.50/0.9168 | 37.79/0.9705 | 41.65/0.9846 | |
BSD68 | CSNet+ | 21.71/0.524 9 | 25.04/0.685 4 | 26.89/0.775 6 | 31.66/0.915 2 | 35.42/0.961 4 |
MR-CSGAN | 22.55/0.541 5 | —/— | 27.66/0.788 7 | —/— | —/— | |
AMP-Net | 22.28/0.531 5 | 25.77/0.720 4 | 27.85/0.811 3 | 32.84/0.932 1 | 36.82/0.971 5 | |
OPINE-Net+ | 21.88/0.516 2 | 25.66/0.713 6 | 27.81/0.804 0 | 32.50/0.923 6 | 36.32/0.965 8 | |
FSOINet | 22.75/0.541 8 | 26.21/0.732 4 | 28.27/0.818 7 | 33.29/0.934 8 | 37.34/0.972 7 | |
DGUNet+ | 22.13/0.521 5 | —/— | 28.13/0.816 5 | —/— | 37.04/0.971 8 | |
DUDONet | 22.57/0.541 7 | 26.06/0.732 1 | 28.12/0.820 4 | 33.12/0.936 1 | 37.14/0.973 3 | |
LG-Net | —/— | 28.32/— | 33.17/— | 37.13/— | ||
FPHGD-Tiny | 22.83/0.544 5 | 26.37/0.737 3 | 28.42/0.822 4 | 33.45/0.936 7 | 37.53/0.973 7 | |
FPHGD-Net | ||||||
FHPGD-Plus | 23.19/0.5623 | 26.59/0.7442 | 28.61/0.8265 | 33.60/0.9378 | 37.63/0.9740 |
Table 2
Comparison of average PSNR/SSIM generalization performance on Urban100"
数据集 | 方法 | PSNR/SSIM | ||||
---|---|---|---|---|---|---|
r=0.01 | r=0.05 | r=0.10 | r=0.30 | r=0.50 | ||
Urban100 | CSNet+ | 19.27/0.481 2 | 22.63/0.679 2 | 24.64/0.774 1 | 29.90/0.916 2 | 33.55/0.967 2 |
AMP-Net | 19.62/0.496 9 | 23.45/0.729 0 | 26.04/0.828 3 | 32.19/0.941 8 | 36.33/0.973 7 | |
OPINE-Net+ | 19.38/0.487 2 | 23.70/0.736 3 | 26.61/0.836 2 | 32.58/0.941 4 | 36.62/0.972 7 | |
FSOINet | 19.87/0.522 3 | 24.57/0.775 0 | 27.53/0.862 4 | 33.84/0.954 0 | 37.80/0.977 7 | |
DGUNet+ | 20.16/0.533 4 | —/— | 28.01/0.870 7 | —/— | 37.63/0.978 3 | |
DUDONet | 19.80/0.541 0 | 24.10/0.761 0 | 26.85/0.848 4 | 33.03/0.950 1 | 37.00/0.976 9 | |
DPC-DUN | —/— | 23.43/0.717 7 | 26.99/0.834 5 | 33.53/0.949 9 | 37.52/0.973 7 | |
FPHGD-Tiny | 20.19/0.535 2 | 24.86/0.783 2 | 27.86/0.867 6 | 34.10/0.956 0 | 38.12/0.979 6 | |
FPHGD-Net | ||||||
FHPGD-Plus | 21.05/0.5889 | 26.28/0.8194 | 29.25/0.8904 | 35.24/0.9618 | 39.03/0.9817 |
Table 3
Comparison of time and space complexity (BSD68, GPU1080 Ti)"
方法 | 模型参数数量/106 | 运行时间/s | 平均时间/s | ||||
---|---|---|---|---|---|---|---|
r=0.01 | r=0.05 | r=0.10 | r=0.30 | r=0.50 | |||
AMP-Net | 1.10 | 0.051 6 | 0.051 3 | 0.052 0 | 0.052 5 | 0.053 5 | 0.052 2 |
OPINE-Net+ | 1.53 | 0.011 3 | 0.010 9 | 0.011 0 | 0.011 0 | 0.011 1 | 0.0111 |
FSOINet | 1.06 | 0.022 9 | 0.023 1 | 0.023 1 | 0.023 3 | 0.023 0 | 0.023 1 |
DGUNet+ | 7.33 | 0.032 2 | — | 0.032 0 | — | 0.032 2 | 0.032 1 |
FPHGD-Tiny | 0.91 | 0.020 3 | 0.020 4 | 0.020 8 | 0.020 8 | 0.020 4 | 0.020 5 |
FPHGD-Net | 1.05 | 0.035 9 | 0.036 5 | 0.036 2 | 0.035 9 | 0.035 9 | 0.036 1 |
FPHGD-Plus | 3.03 | 0.037 3 | 0.037 1 | 0.037 4 | 0.037 2 | 0.037 4 | 0.037 3 |
1 | DONOHO D L .Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306. |
2 | CHEN C, TRAMEL E W, FOWLER J E .Compresse-d-sensing recovery of images and video using multihypothesis predctions[C]∥Proceedings of 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals,Systems and Computers (ASILOMAR).Pacific Grove:IEEE,2011:1193-1198. |
3 | ZHANG J, ZHAO D, GAO W .Group-based sparse r-epresentation for image restoration[J].IEEE Transacti-ons on Image Processing,2014,23(8):3336-3351. |
4 | KULKARNI K, LOHIT S, TURAGA P,et al .Reconnet:non-iterative reconstruction of images from compressively sensed measurements[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:449-458. |
5 | YAO H, DAI F, ZHANG S,et al .Dr2-net:deep residual reconstruction network for image compressive sensing[J].Neurocomputing,2019,359(9):483-493. |
6 | SHI W, JIANG F, LIU S,et al .Image compressed sensing using convolutional neural network[J].IEEE Transactions on Image Processing,2019,29:375-388. |
7 | CUI W, LIU S, JIANG F,et al .Image compressed sensing using non-local neural network[J].IEEE Transactions on Multimedia,2021,25:816-830. |
8 | TIAN J, YUAN W, TU Y .Image compressed sensing using multi-scale residual generative adversarial network[J].The Visual Computer,2022,38(12):4193-4202. |
9 | 魏志超,杨春玲 .时域注意力特征对齐的视频压缩感知重构网络[J].电子学报,2022,50(11):2584-2592. |
WEI Zhi-chao, YANG Chun-ling .Video compressed sensing reconstruction network based on temporal-attention feature alignment[J].Acta Electronica Sinica,2022,50(11):2584-2592. | |
10 | ZHANG J, GHANEM B .ISTA-net:interpretable optimization-inspired deep network for image compressive sensing[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Saly Lake City:IEEE,2018:1828-1837. |
11 | ZHANG J, ZHAO C, GAO W .Optimization-inspired compact deep compressive sensing[J].IEEE Journal of Selected Topics in Signal Processing,2020,14(4):765-774. |
12 | YOU D, XIE J, ZHANG J .ISTA-Net++:flexible deep unfolding network for compressive sensing[C]∥Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME).Shenzhen:IEEE,2021:1-6. |
13 | YOU D, ZHANG J, XIE J,et al .Coast:controllable arbitrary-sampling network for compressive sensing[J].IEEE Transactions on Image Processing,2021,30:6066-6080. |
14 | YANG Y, SUN J, LI H,et al .ADMM-CSNet:a deep learning approach for image compressive sensing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,42(3):521-538. |
15 | ZHANG Z, LIU Y, LIU J,et al .AMP-Net:denoising-based deep unfolding for compressive image sensing[J].IEEE Transactions on Image Processing,2021,30:1487-1500. |
16 | SONG J, CHEN B, ZHANG J .Memory-augmented deep unfolding network for compressive sensing[C]∥Proceedings of the 29th ACM International Conference on Multimedia.New York:ACM,2021:4249-4258. |
17 | CHEN W, YANG C, YANG X .FSOINET:feature-space optimization-inspired network for image compressive sensing[C]∥Proceedings of the 2022 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).Singapore:IEEE,2022:2460-2464. |
18 | 陈文俊,杨春玲 .图像压缩感知的特征域优化及自注意力增强神经网络重构算法[J].电子学报,2022,50(11):2629-2637. |
CHEN Wen-jun, YANG Chun-ling .Feature-space optimization-inspired and self-attention enhanced neural network reconstruction algorithm for image compressive sensing[J].Acta Electronica Sinica,2022,50(11):2629-2637. | |
19 | MOU C, WANG Q, ZHANG J .Deep generalized unfolding networks for image restoration[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:17399-17410. |
20 | CUI W, LIU S, ZHAO D .Fast hierarchical deep unfolding network for image compressed sensing[C]∥Proceedings of the 30th ACM International Conference on Multimedia.New York:ACM,2022:2739-2748. |
21 | SONG J, MOU C, WANG S,et al .Optimization-inspired cross-attention transformer for compressive sensing[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver:IEEE,2023:6174-6184. |
22 | LIAN Q, SU Y, SHI B,et al .LG-Net:local and global complementary priors induced multi-stage progressive network for compressed sensing[J].Signal Processing,2023,202:108737/1-13. |
23 | ZHANG H, YANG C .Dual-domain update and double-group optimization network for image compressive sensing[C]∥Proceedings of 2022 IEEE International Conference on Image Processing (ICIP).Bordeaux:IEEE,2022:1286-1290. |
24 | PARIKH N, BOYD S .Proximal algorithms[J].Foundations and Trends® in Optimization,2014,1(3):127-239. |
25 | SHEN M, GAN H, NING C,et al .TransCS:a transformer-based hybrid architecture for image compressedsensing[J].IEEE Transactions on Image Processing,2022,31:6991-7005. |
26 | SONG J, CHEN B, ZHANG J .Dynamic path-controllable deep unfolding network for compressive sensing[J].IEEE Transactions on Image Processing,2023,32:2202-2214. |
27 | ZHOU Z, LIU F, SHEN H .IEF-CSNET:information enhancement and fusion network for compressed sensing reconstruction[J].Sensors,2023,23(4):1886-2002. |
28 | BREIMAN L .Bagging predictors[J].Machine Learning,1996,24(2):123-140. |
29 | FOWLER J E,MUN S, TRAMEL E W .Block-based compressed sensing of images and video[J].Foundations and Trends® in Signal Processing,2012,4(4):297-416. |
30 | MARDANI M, SUN Q, DONOHO D,et al .Neural proximal gradient descent for compressive imaging[C]∥Proceedings of Advances in Neural Information Processing Systems.Montreal:NeurIPS,2018:9596-9606. |
31 | MARTIN D, FOWLKES C,TAL D,et al .A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]∥Proceedings of the Eighth IEEE International Conference on Computer Vision.Vancouver:IEEE,2001:416-423. |
32 | AGUSTSSON E, TIMOFTE R .Ntire 2017 challenge on single image super-resolution:dataset and study[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.Honolulu:IEEE,2017:126-135. |
33 | HUANG J B, SINGH A, AHUJA N .Single image superresolution from transformed self-exemplars[C]∥Proceedings of the IEEE Conference on Computer Visionand Pattern Recognition.Boston:IEEE,2015:5197-5206. |
34 | LOSHCHILOV I, HUTTER F .Decoupled weight decay regularization[C]∥Proceedings of the 7th International Conference on Learning Representations (ICLR).New Orleans:[s.n.],2019. |
[1] | ZHENG Juanyi, DONG Jiahao, ZHANG Qingjue, et al. Reconfigurable Intelligence Surface Channel Estimation Algorithm Based on RDN [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(3): 102-111. |
[2] | ZHOU Lang, FAN Kun, QU Hua, et al. Forest Fire Recognition by Improved EfficientNet-E Model Based on ECA Attention Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(2): 42-49. |
[3] | LI Fang, GUO Weisen, ZHANG Ping, et al.. Prediction Technique for Remaining Useful Life of Bearing Based on Spatial-Temporal Dual Cell State [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 69-81. |
[4] | SU Jindian, YU Shanshan, HONG Xiaobin. A Self-Supervised Pre-Training Method for Chinese Spelling Correction [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 90-98. |
[5] | LI Jiachun, LI Bowen, LIN Weiwei. AdfNet: An Adaptive Deep Forgery Detection Network Based on Diverse Features [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 82-89. |
[6] | GUO Enqiang, FU Xinsha. Dropped Object Detection Method Based on Feature Similarity Learning [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 30-41. |
[7] | ZHAO Jiandong, JIAO Lanxin, ZHAO Zhimin, et al. A Car-Following Model Driven by Combination of Theory and Data Considering Effects of Lane Change of Side Cars [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 10-19. |
[8] | YE Feng, CHEN Biao, LAI Yizong. Contrastive Knowledge Distillation Method Based on Feature Space Embedding [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(5): 13-23. |
[9] | ZHAO Rongchao, WU Baili, CHEN Zhuyun, WEN Kairu, ZHANG Shaohui, LI Weihua. Graph Neural Network for Fault Diagnosis with Multi-Scale Time-Spatial Information Fusion Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(12): 42-52. |
[10] | HOU Liwei, WANG Hengsheng, ZOU Haoran. Deep Learning-Based Prediction of Contact Force in the Process of Shoveling Up Glass Subtrate [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(8): 71-81. |
[11] | MO Jianwen, ZHU Yanqiao, YUAN Hua, et al. Incremental learning based on neuron regularization and resource releasing [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 71-79,90. |
[12] | LU Lu, ZHONG Wenyu, WU Xiaokun. Image tampering localization based on mutil-scale transformer [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 10-18. |
[13] | ZHANG Qin, HU Jiahui, REN Hailin. Intelligent Pushing Method and Experiment of Feeding Assistant Robot [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 111-120. |
[14] | YANG Chunling, LING Xi, LÜ Zeyu. Feature-domain Multi-Hypothesis Prediction Reconstruction Neural Network for Compressed Video Sensing [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 80-90. |
[15] | WO Yan, LIANG Jiyun, HAN Guoqiang. A cross-modal face retrieval method based on metric learning [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||