Journal of South China University of Technology(Natural Science Edition) ›› 2024, Vol. 52 ›› Issue (6): 148-156.doi: 10.12141/j.issn.1000-565X.230188
• Computer Science & Technology • Previous Articles
LIU Hao1,2(), YUAN Hui1(
), CHEN Chen1, GAO Wei3
Received:
2023-04-06
Online:
2024-06-25
Published:
2023-12-22
Contact:
元辉(1984—),男,博士,教授,主要从事多媒体信号处理等研究。
E-mail:huiyuan@sdu.edu.cn
About author:
刘昊(1994—),男,博士,讲师,主要从事三维点云编码和处理等研究。E-mail: liuhaoxb@gmail.com
Supported by:
CLC Number:
LIU Hao, YUAN Hui, CHEN Chen, GAO Wei. Point Cloud Geometry Coding Framework Based on Sampling[J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(6): 148-156.
Table 1
Quality gain of different coding methods"
数据集 | BD-PSNR/dB | |
---|---|---|
文献[ | 文中方法 | |
平均结果 | -1.76 | 5.49 |
11509_Panda_v4 | -2.08 | 4.54 |
13770_Tiger_V1 | -2.37 | 6.66 |
camel | -3.86 | 6.02 |
casting | -4.98 | 3.06 |
chair | -3.65 | 5.66 |
cow | -2.01 | 6.15 |
duck | -1.62 | 4.21 |
eight | 1.42 | 6.59 |
elk | -3.41 | 4.36 |
genus3 | -1.08 | 5.19 |
kitten | -0.94 | 5.57 |
m32 | -1.82 | 6.31 |
m60 | -0.03 | 6.32 |
m329 | -0.27 | 5.89 |
m333 | -1.67 | 4.97 |
m355 | -1.43 | 4.97 |
pig | -0.01 | 6.06 |
star | -0.39 | 5.48 |
statue_ramesses | -2.69 | 5.90 |
statue_rome | -2.28 | 5.91 |
Table 2
Comparison of reconstruction distortion among different upsampling methods"
数据集 | 不同上采样方法时的PSNR/dB | ||||
---|---|---|---|---|---|
PU-Refiner | PU-GCN | PU-GAN | PU-Geo | MPU | |
平均结果 | 59.34 | 59.19 | 59.07 | 58.66 | 57.81 |
11509_Panda_v4 | 57.75 | 57.40 | 57.60 | 56.82 | 55.93 |
13770_Tiger_V1 | 61.60 | 61.53 | 61.03 | 60.89 | 60.15 |
camel | 59.81 | 59.70 | 59.50 | 59.11 | 58.21 |
casting | 57.61 | 57.28 | 57.10 | 56.94 | 56.16 |
chair | 60.33 | 60.26 | 59.70 | 59.78 | 58.92 |
cow | 60.23 | 60.17 | 59.90 | 59.78 | 58.71 |
duck | 57.28 | 57.06 | 57.24 | 56.61 | 55.65 |
eight | 60.41 | 60.32 | 60.14 | 59.72 | 58.95 |
elk | 57.19 | 56.97 | 57.07 | 56.45 | 55.62 |
genus3 | 58.38 | 58.08 | 58.21 | 57.57 | 56.73 |
kitten | 58.91 | 58.73 | 58.78 | 58.17 | 57.26 |
m32 | 60.77 | 60.79 | 60.38 | 60.13 | 59.35 |
m60 | 61.76 | 61.80 | 61.21 | 61.33 | 60.64 |
m329 | 59.51 | 59.34 | 59.28 | 58.70 | 57.88 |
m333 | 58.21 | 57.98 | 58.12 | 57.48 | 56.61 |
m355 | 58.40 | 58.16 | 58.34 | 57.74 | 56.80 |
pig | 59.70 | 59.62 | 59.50 | 59.09 | 58.20 |
star | 58.47 | 58.24 | 58.36 | 57.70 | 56.82 |
statue_ramesses | 60.10 | 59.99 | 59.78 | 59.38 | 58.56 |
statue_rome | 60.44 | 60.35 | 60.10 | 59.79 | 59.10 |
1 | ZHANG C, CAI Q,CHOU,et al .Viewport:a distributed,immersive teleconferencing system with infrared dot pattern[J].IEEE Multimedia,2013,20(4):17-27. |
2 | SCHNABEL R, KLEIN R .Octree-based point-cloud compression[C]∥Proceedings of the 3rd Eurographics.Berlin:Eurographics Association,2006:12-22. |
3 | G-PCC codec description:ISO/IEC [S]. |
4 | V-PCC codec description:ISO/IEC [S]. |
5 | HUANG Y, PENG J L, KUO C-C,et al .A generic scheme for progressive point cloud coding[J].IEEE Transactions on Visualization and Computer Graphics,2008,14(2):440-453. |
6 | RENTE P D O, BRITES C, ASCENSO J .M,et al.Graph-based static 3d point clouds geometry coding[J].IEEE Transactions on Multimedia,2018,21(2):284-299. |
7 | 张旭康,牛报宁,张锦文 .向量相似度可复原三维点云压缩算法[J].计算机科学与探索,2020,14(4):657-668. |
ZHANG Xukang, NIU Baoning, ZHANG Jinwen .Recoverable 3d point cloud compression algorithm based on vector similarity[J].Journal of Frontiers of Computer Science and Technology,2020,14(4):657-668. | |
8 | KALAIAH A, VARSHNEY A .Statistical geometry representation for efficient transmission and rendering[J].ACM Transactions on Graphics,2005,24(2):348-373. |
9 | SONG F, SHAO Y, GAO W,et al .Layer-wise geometry aggregation framework for lossless lidar point cloud compression[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(12):4603-4616. |
10 | WANG J, ZHU H, LIU H,et al .Lossy point cloud geometry compression via end-to-end learning[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(12):4909-4923. |
11 | MATSUZAKI K, TASAKA K,Binary representation for 3d point cloud compression based on deep auto-encoder[C]∥Proceedings of IEEE Global Conference on Consumer Electronics.Osaka:IEEE,2019:489-490. |
12 | HUANG L, WANG S, WONG K,et al .OctSqueeze:octree structured entropy model for lidar compression[C]∥Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:1310-1320. |
13 | SUN X, WANG S, LIU M .A novel coding architecture for multiline lidar point clouds based on clustering and convolutional lstm network[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(3):2190-2201. |
14 | NGUYEN D T, QUACH M, VALENZISE G,et al .Lossless coding of point cloud geometry using a deep generative model[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(12):4617-4629. |
15 | ZHAO L, MA K-K, LIN X,et al .Real-time lidar point cloud compression using bi-directional prediction and range-adaptive floating-point coding[J].IEEE Transactions on Broadcasting,2022,68(3):620-635. |
16 | WANG J, DING D, LI Z,et al .Sparse tensor-based multiscale representation for point cloud geometry compression[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(7):9055-9071. |
17 | WEI Z, NIU B, XIAO H,et al .Isolated points prediction via deep neural network on point cloud lossless geometry compression[J].IEEE Transactions on Circuits and Systems for Video Technology,2023,33(1):407-420. |
18 | ELDAR Y, LINDENBAUM M .The farthest point strategy for progressive image sampling[J].IEEE Transactions on Image Processing,1997,6(9):1305-1315. |
19 | QUEIROZ R L D, CHOU P A .Compression of 3d point clouds using a region-adaptive hierarchical transform[J].IEEE Transactions on Image Processing,2016,25(8):3947-3956. |
20 | ALEXA M, BEHR J, COHEN-OR D,et al .Computing and rendering point set surfaces[J].IEEE Transactions on Visualization and Computer Graphics,2003,9(1):3-15. |
21 | LIPMAN Y, COHEN-OR D, LEVIN D,et al .Parameterization-free projection for geometry reconstruction[J].ACM Transactions on Graphic,2007,26(3):209-218. |
22 | HUANG H, WU S, GONG M,et al .Edge-aware point set resampling[J].ACM Transactions on Gra-phics,2013,32(1):1-12. |
23 | YU L, LI X, FU C W,et al .PU-Net:point cloud upsampling network[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:2790-2799. |
24 | WANG Y, WU S, HUANG H,et al .Patch-based progressive 3d point set upsampling[C]∥Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:5958-5967. |
25 | QIAN Y, HOU J, KWONG K,et al .PUGeo-Net: a geometry-centric network for 3d point cloud upsampling[C]∥Proceedings of European Conference on Computer Vision.Berlin:Springer,2020:752-769. |
26 | LIU H, YUAN H, HAMZAOUI R,et al .PU-Refiner:a geometry refiner with adversarial learning for point cloud upsampling[C]∥Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.Singapore:IEEE,2022:2270-2274. |
27 | YANG Y, FENG C, SHEN Y,et al .FoldingNet: point cloud auto-encoder via deep grid deformation[C]∥Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:206-215. |
28 | VASWANI A, SHAZEER N, PARMAR N,et al .Attention is all you need[C]∥Proceedings of Advances in Neural Information Processing Systems.Long Beach:NIPS,2017:5998-6008. |
29 | HE K, ZHANG X, REN S,et al .Deep residual learning for image recognition[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Re-cognition.Las Vegas:IEEE,2016:770-778. |
30 | LI R, LI X, FU C,et al .PU-GAN: a point cloud upsampling adversarial network[C]∥Proceedings of IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:7202-7211. |
31 | Evaluation metrics for point cloud compression:ISO/IEC m39966[S]. |
32 | Improvements of the bd-psnr model:VCEG-AI11 [S]. |
33 | YUAN H, ZHANG D, WANG W,et al .A sampling-based 3D point cloud compression algorithm for immersive communication[J].Mobile Networks and Applications,2020,25(5):1863-1872. |
34 | QIAN G, ABUALSHOUR A, LI G,et al .PU-GCN:point cloud upsampling using graph convolutional networks[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:11678-11687. |
[1] | PENG Yipu, LI Jian, HAN Yanqun, TANG Zhiyuan, LI Zichao, YU Fengxiao, CHEN Li, ZOU Kui. Alignment Analysis of Railway Steel Truss Arch Bridge Based on Point Cloud Slicing Algorithm [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(7): 97-106. |
[2] | HU Xizhi, CUI Bofei, WANG Qin, et al. Visual SLAM Algorithm Based on Memory Parking Scene [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(6): 1-11. |
[3] | HU Yongjian, ZHUO Sichao, LIU Beibei, WANG Yufei, LI Jicheng. Improvement of Cross-Dataset Performance of Face Forgery Detection Based on Multi-Scale Spatiotemporal Features and Tampering Probabilities [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(6): 110-119. |
[4] | YANG Chunling, LIANG Ziwen. Feature-Domain Proximal High-Dimensional Gradient Descent Network for Image Compressed Sensing [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(3): 119-130. |
[5] | ZHENG Juanyi, DONG Jiahao, ZHANG Qingjue, et al. Reconfigurable Intelligence Surface Channel Estimation Algorithm Based on RDN [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(3): 102-111. |
[6] | ZHOU Lang, FAN Kun, QU Hua, et al. Forest Fire Recognition by Improved EfficientNet-E Model Based on ECA Attention Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(2): 42-49. |
[7] | CAI Xiaodong, ZHOU Qingsong, YE Qing. Social Recommendation Model Based on Dynamic Neighborhood Sampling [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(2): 32-41. |
[8] | TIAN Sheng, SONG Lin, ZHAO Kailong. Point Cloud Classification Based on Offset Attention Mechanism and Multi-Feature Fusion [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(1): 100-109. |
[9] | LI Fang, GUO Weisen, ZHANG Ping, et al.. Prediction Technique for Remaining Useful Life of Bearing Based on Spatial-Temporal Dual Cell State [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 69-81. |
[10] | SU Jindian, YU Shanshan, HONG Xiaobin. A Self-Supervised Pre-Training Method for Chinese Spelling Correction [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 90-98. |
[11] | LI Jiachun, LI Bowen, LIN Weiwei. AdfNet: An Adaptive Deep Forgery Detection Network Based on Diverse Features [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 82-89. |
[12] | GUO Enqiang, FU Xinsha. Dropped Object Detection Method Based on Feature Similarity Learning [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 30-41. |
[13] | ZHAO Jiandong, JIAO Lanxin, ZHAO Zhimin, et al. A Car-Following Model Driven by Combination of Theory and Data Considering Effects of Lane Change of Side Cars [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 10-19. |
[14] | YE Feng, CHEN Biao, LAI Yizong. Contrastive Knowledge Distillation Method Based on Feature Space Embedding [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(5): 13-23. |
[15] | MA Biyun, WU Gang, LIU Jiaojiao, et al. Low Complexity Blood Flow Velocity Estimation Algorithm via Sparse Pulse Sampling [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(5): 63-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||