Journal of South China University of Technology(Natural Science Edition) ›› 2024, Vol. 52 ›› Issue (10): 112-123.doi: 10.12141/j.issn.1000-565X.230638
Special Issue: 2024年图像处理
• Image Processing • Previous Articles Next Articles
Received:
2023-10-13
Online:
2024-10-10
Published:
2024-03-04
Supported by:
CLC Number:
HU Guanghua, TU Qianxi. Surface Defect Detection Method for Industrial Products Based on Photometric Stereo and Dual Stream Feature Fusion Network[J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(10): 112-123.
Table 2
Comparison of defect detection performance among different models"
模型 | 图像类型 | 竹制托盘缺陷的 检测率/% | 铝盖缺陷的检测率/% | 塑料瓶缺陷的检测率/% | mAP/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
裂缝 | 脏污 | 孔洞 | 划痕 | 脏污 | 凸包 | 凹坑 | 凸包 | 脏污 | 竹制托盘 | 铝盖 | 塑料瓶 | ||
SSD | RGB融合图像 | 57.0 | 90.9 | 46.8 | 64.3 | 97.9 | 60.6 | 97.3 | 92.8 | 98.2 | 64.9 | 74.3 | 96.1 |
散度图 | 81.3 | 44.7 | 83.7 | 54.4 | 5.9 | 80.3 | 98.8 | 98.8 | 59.9 | 69.7 | 46.9 | 85.8 | |
决策融合图像 | 60.5 | 88.7 | 73.8 | 60.0 | 78.0 | 67.5 | 99.9 | 95.5 | 94.5 | 74.3 | 68.5 | 96.6 | |
Faster R-CNN | RGB融合图像 | 79.0 | 94.9 | 87.7 | 88.9 | 100.0 | 53.7 | 90.9 | 88.7 | 90.9 | 87.2 | 80.9 | 90.2 |
散度图 | 80.9 | 77.0 | 88.5 | 64.0 | 3.4 | 56.8 | 90.6 | 90.9 | 27.5 | 82.1 | 41.4 | 69.7 | |
决策融合图像 | 79.9 | 89.4 | 88.1 | 84.3 | 100.0 | 56.8 | 99.4 | 99.4 | 90.9 | 85.8 | 80.4 | 96.6 | |
YOLOv5 | RGB融合图像 | 76.6 | 98.8 | 87.8 | 88.0 | 99.8 | 67.2 | 95.9 | 85.5 | 96.9 | 87.7 | 84.7 | 92.7 |
散度图 | 84.3 | 0.9 | 92.4 | 36.8 | 1.0 | 88.4 | 99.4 | 95.8 | 18.8 | 58.9 | 40.1 | 71.3 | |
决策融合图像 | 89.3 | 99.2 | 90.2 | 81.7 | 98.3 | 87.7 | 99.4 | 91.3 | 97.3 | 92.9 | 89.2 | 96.0 | |
文中模型 | RGB融合图像+散度图 | 88.4 | 98.5 | 94.8 | 83.5 | 99.5 | 89.4 | 97.5 | 96.1 | 98.4 | 93.9 | 90.8 | 97.3 |
Table 4
Results of ablation experiments"
实验序号 | M1 | M2 | M3 | 竹制托盘缺陷检测率/% | 铝盖缺陷的检测率/% | 塑料瓶缺陷的检测率/% | mAP/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
裂缝 | 脏污 | 孔洞 | 划痕 | 脏污 | 凸包 | 凹坑 | 凸包 | 脏污 | 竹制托盘 | 铝盖 | 塑料瓶 | ||||
1 | 84.1 | 97.7 | 93.2 | 73.4 | 98.9 | 83.6 | 97.0 | 89.3 | 91.7 | 91.7 | 85.3 | 92.7 | |||
2 | √ | 86.8 | 98.2 | 90.3 | 79.9 | 97.5 | 83.6 | 99.4 | 92.8 | 97.3 | 91.7 | 87.0 | 96.5 | ||
3 | √ | √ | 87.9 | 98.4 | 96.7 | 77.2 | 97.0 | 87.1 | 99.0 | 94.4 | 97.7 | 94.3 | 87.1 | 97.1 | |
4 | √ | √ | √ | 88.4 | 98.5 | 94.8 | 83.5 | 99.5 | 89.4 | 97.5 | 96.1 | 98.4 | 93.9 | 90.8 | 97.3 |
1 | WOODHAM R J .Photometric stereo:a reflectance map technique for determining surface orientation from image intensity[C]∥ Proceedings of SPIE, Image Understanding Systems and Industrial Applications Ⅰ.San Diego:SPIE, 1978:136-143. |
2 | SOUKUP D, HUBER-MORK R .Convolutional neural networks for steel surface defect detection from photometric stereo images[C]∥ Proceedings of the 10th International Symposium on Visual Computing.Las Vegas:Springer-Verlag,2014:668-677. |
3 | CAO Y, DING B, CHEN J,et al .Photometric-stereo-based defect detection system for metal parts[J].Sensors,2022,22(21):8374/1-17. |
4 | REN S, HE K, GIRSHICK R,et al .Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. |
5 | XIE R, ZHU Y, LUO J,et al .Detection algorithm for bearing roller end surface defects based on improved YOLOv5n and image fusion[J].Measurement Science and Technology,2023,34(4):045402/1-11. |
6 | SAIZ F A, BARANDIARAN I, ARBELAIZ A,et al .Photometric stereo-based defect detection system for steel components manufacturing using a deep segmentation network[J].Sensors,2022,22(3):882/1-14. |
7 | XIAO F, LI B, PENG Y,et al . Multi-modal weights sharing and hierarchical feature fusion for RGBD salient object detection[J]. IEEE Access,2020,8:26602/1-11. |
8 | LI G, LIU Z, LING H .ICNet:information conversion network for RGB-D based salient object detection[J].IEEE Transactions on Image Processing,2020,29:4873-4884. |
9 | LV H, DENG B, SHI C .Research on multi-source image fusion target detection technology based on neural network[J].Journal of Physics:Conference Series,2021,2033:012139/1-5. |
10 | FU H, WANG S, DUAN P,et al .LRAF-Net:long-range attention fusion network for visible-infrared object detection[J].IEEE Transactions on Neural Networks and Learning Systems,2023,(2023-06-06).Doi:10.1109/TNNLS.2023.3266452. |
11 | JIN X, GUO C, HE Z,et al . FCMNet:frequency-aware cross-modality attention networks for RGB-D salient object detection[J].Neurocomputing,2022,491:414-425. |
12 | 金闳奇 .笔记本电脑铝合金面板表面缺陷检测系统 [D].广州:广东工业大学,2022. |
13 | TREIBITZ T, SCHECHNER Y Y .Turbid scene enhancement using multi-directional illumination fusion [J].IEEE Transactions on Image Processing,2012,21(11):4662-4667. |
14 | MNIH V, HEESS N, GRAVES A,et al . Recurrent models of visual attention[C]∥ Proceedings of the 28th Annual Conference on Neural Information Processing Systems.Montreal:Neural Information Processing Systems Foundation,2014:2204-2212. |
15 | WOO S, PARK J, LEE J-Y,et al .CBAM:convolutional block attention module[C]∥ Proceedings of the 15th European Conference on Computer Vision.Munich:Springer-Verlag,2018:3-19. |
16 | CHUNG J, GULCEHRE C, CHO K,et al .Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].(2014-11-11)[2023-10-12]. . |
17 | WANG W, XIE E, SONG X,et al .Efficient and accurate arbitrary-shaped text detection with pixel aggregation network[C]∥ Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:8439-8448. |
18 | YU J, JIANG Y, WANG Z,et al .UnitBox:an advanced object detection network[C]∥ Proceedings of the 24th ACM International Conference on Multimedia. Amsterdam:ACM,2016:516-520. |
19 | LIU W, ANGUELOV D, ERHAN D,et al .SSD:single shot multibox detector[C]∥ Proceedings of the 14th European Conference on Computer Vision.Amsterdam:Springer-Verlag,2016:21-37. |
[1] | HU Xizhi, CUI Bofei, WANG Qin, et al. Visual SLAM Algorithm Based on Memory Parking Scene [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(6): 1-11. |
[2] | LIU Hao, YUAN Hui, CHEN Chen, GAO Wei. Point Cloud Geometry Coding Framework Based on Sampling [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(6): 148-156. |
[3] | YANG Chunling, LIANG Ziwen. Feature-Domain Proximal High-Dimensional Gradient Descent Network for Image Compressed Sensing [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(3): 119-130. |
[4] | ZHENG Juanyi, DONG Jiahao, ZHANG Qingjue, et al. Reconfigurable Intelligence Surface Channel Estimation Algorithm Based on RDN [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(3): 102-111. |
[5] | ZHOU Lang, FAN Kun, QU Hua, et al. Forest Fire Recognition by Improved EfficientNet-E Model Based on ECA Attention Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(2): 42-49. |
[6] | CHEN Qiong, FENG Yuan, LI Zhiqun, et al. Semantic-Visual Consistency Constraint Network for Zero-Shot Image Semantic Segmentation [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(10): 41-50. |
[7] |
LIU Weipeng, LI Xu, REN Ziwen, et al.
Algorithm for Registration of Multiscale Residual Deformable Lung CT Images #br# [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(10): 135-145. |
[8] | LI Fang, GUO Weisen, ZHANG Ping, et al.. Prediction Technique for Remaining Useful Life of Bearing Based on Spatial-Temporal Dual Cell State [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 69-81. |
[9] | SU Jindian, YU Shanshan, HONG Xiaobin. A Self-Supervised Pre-Training Method for Chinese Spelling Correction [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 90-98. |
[10] | LI Jiachun, LI Bowen, LIN Weiwei. AdfNet: An Adaptive Deep Forgery Detection Network Based on Diverse Features [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 82-89. |
[11] | GUO Enqiang, FU Xinsha. Dropped Object Detection Method Based on Feature Similarity Learning [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 30-41. |
[12] | ZHAO Jiandong, JIAO Lanxin, ZHAO Zhimin, et al. A Car-Following Model Driven by Combination of Theory and Data Considering Effects of Lane Change of Side Cars [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 10-19. |
[13] | YE Feng, CHEN Biao, LAI Yizong. Contrastive Knowledge Distillation Method Based on Feature Space Embedding [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(5): 13-23. |
[14] | ZHAO Rongchao, WU Baili, CHEN Zhuyun, et al. Graph Neural Network for Fault Diagnosis with Multi-Scale Time-Spatial Information Fusion Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(12): 42-52. |
[15] | HOU Liwei, WANG Hengsheng, ZOU Haoran. Deep Learning-Based Prediction of Contact Force in the Process of Shoveling Up Glass Subtrate [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(8): 71-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||