华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (3): 97-104.doi: 10.12141/j.issn.1000-565X.230489

• 材料科学与技术 • 上一篇    下一篇

TC4表面耐高温氧化熔覆涂层的制备及性能分析

郑立娟(), 谢印凯, 张阔, 付宇明()   

  1. 燕山大学 机械工程学院,河北 秦皇岛 066004
  • 收稿日期:2023-07-19 出版日期:2025-03-10 发布日期:2024-10-25
  • 通信作者: 付宇明 E-mail:ydzlj@ysu.edu.cn;mec9@ysu.edu.cn
  • 作者简介:郑立娟(1971—),女,博士,教授,主要从事激光熔覆及高熵合金新材料制备研究。E-mail: ydzlj@ysu.edu.cn
  • 基金资助:
    河北省自然科学基金项目(E2021203218)

Preparation and Performance Analysis of High Temperature Oxidation Cladding Coating on TC4 Surface

ZHENG Lijuan(), XIE Yinkai, ZHANG Kuo, FU Yuming()   

  1. School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004,Hebei,China
  • Received:2023-07-19 Online:2025-03-10 Published:2024-10-25
  • Contact: FU Yuming E-mail:ydzlj@ysu.edu.cn;mec9@ysu.edu.cn
  • Supported by:
    the Natural Science Foundation of Hebei Province(E2021203218)

摘要:

由于TC4材料在高温环境下易发生氧化失效,因此在高温、海洋等恶劣环境条件下,TC4材料的使用寿命大大缩短。为延长TC4材料表面的耐高温氧化性能,该文采用激光熔覆技术在TC4表面制备含梯度质量分数添加相的耐高温氧化熔覆涂层,并利用扫描电子显微镜(SEM)对涂层的微观组织进行观察,分析添加相对熔覆涂层微观组织形态的影响;然后利用微观硬度试验获得不同材料组分涂层的微观硬度分布,分析添加相含量对熔覆涂层显微硬度的影响;最后利用宏观形貌观察、氧化动力学分析、SEM扫描电镜分析和X射线衍射分析等方法对高温氧化试验后的熔覆试件进行耐高温氧化性能评估,分析添加陶瓷相变量和高温氧化过程对熔覆涂层微观组织及物相组成的影响规律,并探究涂层的耐高温氧化机理。试验结果表明:添加陶瓷相粉末后,熔覆涂层的微观硬度明显提高,微观组织更加细化紧密,高温氧化过程中生成的致密氧化产物能够有效地隔绝高温氧化环境,大幅提升表面熔覆涂层的抗高温氧化性能;熔覆涂层表面生成的高温氧化产物Ta2O5具有结构致密、高温稳定性强且抗氧化性能突出等特点,是提升含陶瓷相TC4熔覆涂层表面耐高温氧化性能的主要原因。

关键词: 钛合金, 陶瓷粉末, 高温氧化, 激光熔覆

Abstract:

Due to the susceptibility of TC4 material to oxidation failure in high-temperature environments, its service life is significantly shortened under harsh conditions such as high temperatures and marine environments. To augment the high-temperature oxidation resistance of TC4 material surfaces, this paper employed laser cladding technology to prepare a high-temperature oxidation-resistant cladding coating with a gradient mass fraction of additive phases on the TC4 surface. The microstructure of the coating was observed using scanning electron microscopy (SEM), and the impact of the additive phase on the microstructure morphology of the cladding was analyzed. Subsequently, microhardness tests were performed to obtain the microhardness distribution of coatings with different material compositions, and the effect of additive phase content on the microhardness of the cladding was analyzed. Ultimately, macroscopic morphology observation, oxidation kinetics, SEM, and XRD methods were employed to evaluate the high-temperature oxidation resistance of the cladded samples after high-temperature oxidation tests. The effects of ceramic phase content and the high-temperature oxidation process on the microstructure and phase composition of the cladding layer were analyzed, and the oxidation resistance mechanism of the coating was explored. The experimental findings reveal that the incorporation of ceramic phase powders results in a marked improvement in the microhardness of the cladding layer, along with a refinement and densification of its microstructure. The dense oxide products formed during the high-temperature oxidation process effectively isolate the coating from the oxidizing environment, thereby substantially enhancing its resistance to high-temperature oxidation. The high-temperature oxidation product Ta2O5 formed on the surface of the cladding layer has a dense structure, strong high-temperature stability, and excellent oxidation resistance, which is the main reason for the improved high-temperature oxidation resistance of the ceramic phase-containing TC4 cladding layer.

Key words: titanium alloy, ceramic powder, high temperature oxidation, laser cladding

中图分类号: