Journal of South China University of Technology(Natural Science Edition) ›› 2023, Vol. 51 ›› Issue (12): 42-52.doi: 10.12141/j.issn.1000-565X.220593
Special Issue: 2023年机械工程
• Mechanical Engineering • Previous Articles Next Articles
ZHAO Rongchao1 WU Baili1,5 CHEN Zhuyun1,2,3 WEN Kairu1 ZHANG Shaohui4 LI Weihua1,2
Received:
2022-09-09
Online:
2023-12-25
Published:
2023-04-24
Contact:
陈祝云(1990-),男,博士,副研究员,主要从事机械动态信号处理、装备健康管理与智能运维等研究。
E-mail:mezychen@scut.edu.cn
About author:
赵荣超(1987-),男,博士,副教授,主要从事汽车热管理和故障诊断研究。E-mail: merczhao@scut.edu.cn
Supported by:
CLC Number:
ZHAO Rongchao, WU Baili, CHEN Zhuyun, et al. Graph Neural Network for Fault Diagnosis with Multi-Scale Time-Spatial Information Fusion Mechanism[J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(12): 42-52.
1 | 唐宏宾,傅政,邓习树,等 .工程机械柱塞泵变载荷工况故障诊断方法[J].华南理工大学学报(自然科学版),2021,49(2):110-119,139. |
TANG Hongbin, FU Zheng, DENG Xishu,et al .Fault diagnosis method of piston pump in construction machinery under variable load condition[J].Journal of South China University of Technology (Natural Science Edition),2021,49(2):110-119,139. | |
2 | 陈雪峰,郭艳婕,许才彬,等 .风电装备故障诊断与健康监测研究综述[J].中国机械工程,2020,31(2):175-189. |
CHEN Xuefeng, GUO Yanjie, XU Caibin,et al .Review of fault diagnosis and health monitoring for wind power equipment[J].China Mechanical Engineering,2020,31(2):175-189. | |
3 | 刘畅,伍星,刘韬,等 .基于近似等距投影和支持向量机的滚动轴承故障诊断[J].振动与冲击,2018,37(5):234-239. |
LIU Chang, WU Xing, LIU Tao,et al .Fault diagnosis of rolling bearings based on near-isometric projection and support vector machine[J].Journal of Vibration and Shock,2018,37(5):234-239. | |
4 | 王栋璀,丁云飞,朱晨烜 .基于中智KNN的齿轮箱故障诊断方法[J].振动与冲击,2019,38(20):148-153. |
WANG Dongcui, DING Yunfei, ZHU Chenxuan .A fault diagnosis method for gearbox based on neutrosophic K-nearest neighbor[J].Journal of Vibration and Shock,2019,38(20):148-153. | |
5 | 周璇,王晓佩,梁列全,等 .基于随机森林算法的制冷剂充注量故障诊断[J].华南理工大学学报(自然科学版),2020,48(2):16-24. |
ZHOU Xuan, WANG Xiaopei, LIANG Liequan,et al .Random forests algorithm-based fault diagnosis for refrigerant charge[J].Journal of South China University of Technology (Natural Science Edition),2020,48(2):16-24. | |
6 | 陈祝云,钟琪,黄如意,等 .基于增强迁移卷积神经网络的机械智能故障诊断[J].机械工程学报,2021,57(21):96-105. |
CHEN Zhuyun, ZHONG Qi, HUANG Ruyi,et al .Intelligent fault diagnosis for machinery based on enhanced transfer convolutional neural network[J].Journal of Mechanical Engineering,2021,57(21):96-105. | |
7 | 杨平,苏燕辰 .基于卷积门控循环网络的滚动轴承故障诊断[J].航空动力学报,2019,34(11):2432-2439. |
YANG Ping, SU Yanchen .Fault diagnosis of rolling bearing based on convolution gated recurrent network[J].Journal of Aerospace Power,2019,34(11):2432-2439. | |
8 | 侯文擎,叶鸣,李巍华 .基于改进堆叠降噪自编码的滚动轴承故障分类[J].机械工程学报,2018,54(7):87-96. |
HOU Wenqing, YE Ming, LI Weihua .Rolling element bearing fault classification using improved stacked de-noising auto-encoders[J].Journal of Mechanical Engineering,2018,54(7):87-96. | |
9 | 李益兵,黄定洪,马建波,等 .基于深度置信网络与信息融合的齿轮故障诊断方法[J].振动与冲击,2021,40(8):62-69. |
LI Yibing, HUANG Dinghong, MA Jianbo,et al .A gear fault diagnosis method based on deep belief network and information fusion[J].Journal of Vibration and Shock,2021,40(8):62-69. | |
10 | ZHANG W, PENG G, LI C,et al .A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J].Sensors,2017,17(2):425/1-21. |
11 | WEN L, LI X, GAO L,et al .A new convolutional neural network-based data-driven fault diagnosis method [J].IEEE Transactions on Industrial Electronics,2017,65(7):5990-5998. |
12 | ZHAO R, WANG D, YAN R,et al .Machine health monitoring using local feature-based gated recurrent unit networks[J].IEEE Transactions on Industrial Electronics,2017,65(2):1539-1548. |
13 | de BRUIN T, VERBERT K, BABUSKA R .Railway track circuit fault diagnosis using recurrent neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2016,28(3):523-533. |
14 | ZHANG D, STEWART E, ENTEZAMI M,et al .Intelligent acoustic-based fault diagnosis of roller bearings using a deep graph convolutional network[J].Measurement,2020,156:107585. |
15 | YU X, TANG B, ZHANG K. Fault diagnosis of wind turbine gearbox using a novel method of fast deep graph convolutional networks[J].IEEE Transactions on Instrumentation and Measurement,2021,70:6502714/1-14. |
16 | TANG Y, ZHANG X, ZHAI Y,et al .Rotating machine systems fault diagnosis using semisupervised conditional random field-based graph attention network[J].IEEE Transactions on Instrumentation and Measurement,2021,70:3521010/1-10. |
17 | LI T, ZHAO Z, SUN C,et al .Multireceptive field graph convolutional networks for machine fault diagnosis[J].IEEE Transactions on Industrial Electronics,2020,68(12):12739-12749. |
18 | YANG C, ZHOU K, LIU J .SuperGraph:spatial-temporal graph-based feature extraction for rotating machinery diagnosis[J].IEEE Transactions on Industrial Electronics,2021,69(4):4167-4176. |
19 | LIU X, TIAN H, DAI Z .Bearing fault diagnosis based on multi-scale convolution neural network and dropout[C]∥Proceedings of 2020 IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC).Shanghai:IEEE,2020:1401-1406. |
20 | JIANG G, HE H, YAN J,et al .Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox[J].IEEE Transactions on Industrial Electronics,2018,66(4):3196-3207. |
21 | 吴静然,丁恩杰,崔冉,等 .采用多尺度注意力机制的旋转机械故障诊断方法[J].西安交通大学学报,2020,54(2):51-58. |
WU Jingran, DING Enjie, CUI Ran,et al .A diagnostic approach for rotating machinery using multi-scale feature attention mechanism[J].Journal of Xi’an Jiaotong University,2020,54(2):51-58 | |
22 | SCARSELLI F, GORI M, TSOI A C,et al .The graph neural network model[J].IEEE Transactions on Neural Networks,2008,20(1): 61-80. |
23 | KIFI T N, WELLING M .Semi-supervised classification with graph convolutional networks[J].arXiv preprint arXiv:,2016. |
24 | ZHAO Z, LI T, WU J,et al .Deep learning algorithms for rotating machinery intelligent diagnosis:an open source benchmark study[J].ISA Transactions,2020,107:224-255. |
[1] | YANG Chunling, LIANG Ziwen. Feature-Domain Proximal High-Dimensional Gradient Descent Network for Image Compressed Sensing [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(3): 119-130. |
[2] | ZHENG Juanyi, DONG Jiahao, ZHANG Qingjue, et al. Reconfigurable Intelligence Surface Channel Estimation Algorithm Based on RDN [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(3): 102-111. |
[3] | ZHOU Lang, FAN Kun, QU Hua, et al. Forest Fire Recognition by Improved EfficientNet-E Model Based on ECA Attention Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(2): 42-49. |
[4] | CAI Xiaodong, ZHOU Qingsong, YE Qing. Social Recommendation Model Based on Dynamic Neighborhood Sampling [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(2): 32-41. |
[5] | LI Fang, GUO Weisen, ZHANG Ping, et al.. Prediction Technique for Remaining Useful Life of Bearing Based on Spatial-Temporal Dual Cell State [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 69-81. |
[6] | SU Jindian, YU Shanshan, HONG Xiaobin. A Self-Supervised Pre-Training Method for Chinese Spelling Correction [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 90-98. |
[7] | LI Jiachun, LI Bowen, LIN Weiwei. AdfNet: An Adaptive Deep Forgery Detection Network Based on Diverse Features [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 82-89. |
[8] | CHEN Xindu, FU Zhisen, WU Zhiheng, et al.. Small-Sample Fault Diagnosis Method Based on Multi-Head Convolution and Differential Self-Attention [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(7): 21-33. |
[9] | GUO Enqiang, FU Xinsha. Dropped Object Detection Method Based on Feature Similarity Learning [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 30-41. |
[10] | ZHAO Jiandong, JIAO Lanxin, ZHAO Zhimin, et al. A Car-Following Model Driven by Combination of Theory and Data Considering Effects of Lane Change of Side Cars [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 10-19. |
[11] | YE Feng, CHEN Biao, LAI Yizong. Contrastive Knowledge Distillation Method Based on Feature Space Embedding [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(5): 13-23. |
[12] | CHEN Zhong, TANG Xin, ZHANG Daming, et al. Stockwell Transform Combined with Subdomain Adaptation for Escalator Motor Bearing Transfer Diagnosis [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(12): 34-41. |
[13] | XU Lunhui, YU Jiaxin, PEI Mingyang, et al. Repositioning Strategy for Ride-Hailing Vehicles Based on Geometric Road Network Structure and Reinforcement Learning [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(10): 99-109. |
[14] | HOU Liwei, WANG Hengsheng, ZOU Haoran. Deep Learning-Based Prediction of Contact Force in the Process of Shoveling Up Glass Subtrate [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(8): 71-81. |
[15] | MO Jianwen, ZHU Yanqiao, YUAN Hua, et al. Incremental learning based on neuron regularization and resource releasing [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 71-79,90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||