Journal of South China University of Technology(Natural Science Edition) ›› 2024, Vol. 52 ›› Issue (10): 9-21.doi: 10.12141/j.issn.1000-565X.230578
• Electronics, Communication & Automation Technology • Previous Articles Next Articles
YANG Chunling(), CHEN Wenjun, LIU Jiahui
Received:
2023-09-14
Online:
2024-10-25
Published:
2024-03-14
About author:
杨春玲(1970—),女,教授,主要从事图像/视频压缩编码、图像质量评价、图像/视频压缩感知重构研究。E-mail: eeclyang@scut.edu.cn
Supported by:
CLC Number:
YANG Chunling, CHEN Wenjun, LIU Jiahui. Feature-Space Optimization-Inspired and Multi-Hypothesis Cross-Attention Reconstruction Neural Network for Video Compressive Sensing[J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(10): 9-21.
Table 1
Comparison of average PSNR and SSIM of reconstructed frames using different algorithms at a keyframe sampling rate of 0.200 on UCF-101 dataset"
算法 | PSNR/dB | SSIM | ||||
---|---|---|---|---|---|---|
rnon-key=0.009 | rnon-key=0.018 | rnon-key=0.037 | rnon-key=0.009 | rnon-key=0.018 | rnon-key=0.037 | |
CSVideoNet | 24.23 | 25.09 | 26.87 | 0.74 | 0.77 | 0.81 |
PRCVSNet | 26.86 | 28.93 | 31.09 | |||
2sER-VGSR-Net | 28.39 | 29.60 | 31.23 | 0.82 | 0.85 | 0.89 |
STMNet | 29.98 | 31.14 | 32.50 | 0.89 | 0.91 | 0.93 |
JDR-TAFA-Net | 30.33 | 31.63 | 33.14 | 0.89 | 0.91 | 0.94 |
ImrNet | 30.54 | 31.90 | 33.40 | 0.89 | 0.91 | 0.93 |
FOFMCNet | 30.98 | 32.68 | 34.17 | 0.90 | 0.93 | 0.95 |
Table 2
Comparison of average PSNR and SSIM of reconstructed frames using different algorithms at a keyframe sampling rate of 0.500 on QCIF dataset"
序列 | 算法 | PSNR/dB | SSIM | ||||
---|---|---|---|---|---|---|---|
rnon-key=0.010 | rnon-key=0.050 | rnon-key=0.100 | rnon-key=0.010 | rnon-key=0.050 | rnon-key=0.100 | ||
Hall | VCSNet | 30.57 | 31.90 | 32.05 | 0.95 | 0.96 | 0.96 |
PRCVSNet | 33.81 | 35.61 | 0.97 | 0.98 | |||
ImrNet | 34.42 | 36.89 | 38.11 | 0.97 | 0.98 | 0.98 | |
JDR-TAFA-Net | 35.39 | 37.26 | 38.25 | 0.98 | 0.98 | 0.98 | |
FOFMCNet | 37.46 | 39.99 | 41.04 | 0.98 | 0.99 | 0.99 | |
Ice | VCSNet | 25.77 | 29.51 | 30.95 | 0.84 | 0.91 | 0.94 |
PRCVSNet | 31.67 | 33.66 | 0.95 | 0.97 | |||
ImrNet | 29.25 | 33.76 | 35.90 | 0.93 | 0.97 | 0.98 | |
JDR-TAFA-Net | 30.03 | 34.83 | 36.23 | 0.94 | 0.97 | 0.98 | |
FOFMCNet | 31.93 | 37.35 | 39.41 | 0.95 | 0.98 | 0.99 | |
Soccer | VCSNet | 24.62 | 28.62 | 30.51 | 0.63 | 0.77 | 0.85 |
PRCVSNet | 30.77 | 33.14 | 0.84 | 0.90 | |||
ImrNet | 27.55 | 31.81 | 34.24 | 0.92 | 0.88 | 0.92 | |
JDR-TAFA-Net | 27.56 | 32.25 | 34.79 | 0.78 | 0.90 | 0.93 | |
FOFMCNet | 28.84 | 34.35 | 36.87 | 0.81 | 0.93 | 0.95 |
Table 3
Comparison of average PSNR and SSIM of reconstructed frames using different algorithms at a keyframe sampling rate of 0.500 on REDS4 dataset"
rnon-key | 算法 | PSNR/dB | SSIM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
000序列 | 011序列 | 015序列 | 020序列 | 平均值 | 000序列 | 011序列 | 015序列 | 020序列 | 平均值 | ||
0.010 | MH | 22.48 | 18.79 | 23.89 | 17.47 | 20.66 | 0.65 | 0.47 | 0.72 | 0.44 | 0.57 |
RRS | 20.72 | 21.64 | 25.34 | 21.45 | 22.29 | 0.58 | 0.56 | 0.73 | 0.59 | 0.62 | |
VCSNet | 24.28 | 23.95 | 28.10 | 23.82 | 25.03 | 0.64 | 0.58 | 0.78 | 0.59 | 0.65 | |
ImrNet | 25.71 | 25.93 | 30.01 | 25.15 | 26.70 | 0.67 | 0.66 | 0.81 | 0.66 | 0.70 | |
DUMHAN | 27.74 | 26.72 | 31.02 | 25.97 | 27.86 | 0.77 | 0.70 | 0.85 | 0.70 | 0.76 | |
FOFMCNet | 29.12 | 27.57 | 31.59 | 26.71 | 28.75 | 0.84 | 0.73 | 0.86 | 0.74 | 0.79 | |
0.100 | MH | 24.29 | 20.33 | 25.15 | 19.03 | 22.20 | 0.72 | 0.53 | 0.75 | 0.49 | 0.62 |
RRS | 26.95 | 28.92 | 34.33 | 27.90 | 29.53 | 0.80 | 0.80 | 0.92 | 0.80 | 0.83 | |
VCSNet | 28.51 | 29.56 | 33.71 | 29.89 | 30.42 | 0.82 | 0.82 | 0.91 | 0.85 | 0.85 | |
ImrNet | 29.09 | 32.29 | 36.33 | 31.23 | 32.24 | 0.83 | 0.88 | 0.94 | 0.89 | 0.88 | |
DUMHAN | 31.80 | 33.52 | 38.00 | 32.17 | 33.87 | 0.91 | 0.90 | 0.95 | 0.91 | 0.92 | |
FOFMCNet | 32.12 | 33.41 | 37.36 | 32.30 | 33.80 | 0.92 | 0.90 | 0.95 | 0.92 | 0.92 |
1 | DONOHO D L .Compressed sensing[J].IEEE Tran-sactions on Information Theory,2006,52(4):1289-1306. |
2 | MIDDYA R, CHAKRAVARTY N, NASKAR M K .Compressive sensing in wireless sensor networks:a survey[J].IETE Technical Review,2017,34(6):642-654. |
3 | ZHOU S, XU T, DONG S,et al .RDFNet:regional dynamic FISTA-Net for spectral snapshot compressive imaging[J].IEEE Transactions on Computational Imaging,2023,9:490-501. |
4 | 杨婧,苗延巍 .压缩感知技术在颅脑MRI的临床应用进展[J].磁共振成像,2022,13(9):144-147,159. |
YANG Jing, MIAO Yanwei .Clinical application progress of compressed sensing technology in cranial MRI[J].Magnetic Resonance Imaging,2022,13(9):144-147,159. | |
5 | WANG Z, ZHANG H, CHENG Z,et al .MetaSCI:scalable and adaptive reconstruction for video compressive sensing[C]∥ Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021: 2083-2092. |
6 | BARON D, DUARTE M F, WAKIN M B,et al .Distributed compressive sensing[EB/OL].(2009-01-22)[2023-10-08].. |
7 | 韩乐,江怡华 .鲁棒截断L1-L2全变分稀疏恢复模型[J].华南理工大学学报(自然科学版),2023,51(5):45-53. |
HAN Le, JIANG Yihua .Robust truncated L1-L2 total variation sparse restoration models[J].Journal of South China University of Technology (Natural Science Edition),2023,51(5):45-53. | |
8 | LIU Y, YUAN X, SUO J L,et al .Rank minimization for snapshot compressive imaging[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,41(12):2990-3006. |
9 | CHENG Z H, LU R Y, WANG Z J,et al .BIRNAT:bidirectional recurrent neural networks with adversarial training for video snapshot compressive imaging[C]∥ Proceedings of the 16th European Conference on Computer Vision.Glasgow:Springer,2020:258-275. |
10 | CHENG Z H, CHEN B, LIU G L,et al .Memory-efficient network for large-scale video compressive sensing[C]∥ Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:16246-16255. |
11 | MUN S, FOWLER J E .Residual reconstruction for block-based compressed sensing of video[C]∥ Proceedings of 2011 Data Compression Conference.Snowbird:IEEE,2011:183-192. |
12 | TRAMEL E W, FOWLER J E .Video compressed sensing with multi hypothesis[C]∥ Proceedings of 2011 Data Compression Conference.Snowbird:IEEE,2011:193-202. |
13 | OU W F, YANG C L, LI W H,et al .A two-stage multi-hypothesis reconstruction scheme in compressed video sensing[C]∥ Proceedings of 2016 IEEE International Conference on Image Processing.Phoenix:IEEE,2016:2494-2498. |
14 | ZHAO C, MA S, ZHANG J,et al .Video compressive sensing reconstruction via reweighted residual sparsity[J].IEEE Transactions on Circuits and Systems for Video Technology,2017,27(6):1182-1195. |
15 | 和志杰,杨春玲,汤瑞东 .视频压缩感知中基于结构相似的帧间组稀疏表示重构算法研究[J].电子学报,2018,46(3):544-553. |
HE Zhi-jie, YANG Chun-ling, TANG Rui-dong .Research on structural similarity based inter-frame group sparse representation for compressed video sensing[J].Acta Electronica Sinica,2018,46(3):544-553. | |
16 | XU K, REN F .CSVideoNet:a real-time end-to-end learning framework for high-frame-rate video compressive sensing[C]∥ Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision.Lake Tahoe:IEEE,2018:1680-1688. |
17 | LING X, YANG C, PEI H.Compressed video sensing network based on alignment prediction and residual reconstruction[C]∥ Proceedings of 2020 IEEE International Conference on Multimedia and Expo.London:IEEE,2020:9102723/1-6. |
18 | DAI J, QI H, XIONG Y,et al .Deformable convolutional networks[C]∥ Proceedings of 2017 IEEE International Conference on Computer Vision.Venice:IEEE,2017:764-773. |
19 | 魏志超,杨春玲 .时域注意力特征对齐的视频压缩感知重构网络[J].电子学报,2022,50(11):2584-2592. |
WEI Zhi-chao, YANG Chun-ling .Video compressed sensing reconstruction network based on temporal-attention feature alignment[J].Acta Electronica Sinica,2022,50(11):2584-2592. | |
20 | XUAN Y, YANG C .2sER-VGSR-Net:a two-stage enhancement reconstruction based on video group sparse representation network for compressed video sensing[C]∥ Proceedings of 2020 IEEE International Conference on Multimedia and Expo.London:IEEE,2020:9102849/1-6. |
21 | YANG X, YANG C .ImrNet:an iterative motion compensation and residual reconstruction network for video compressed sensing[C]∥ Proceedings of 2021 IEEE International Conference on Acoustics,Speech and Signal Processing.Toronto:IEEE,2021:2350-2354. |
22 | RANJAN A, BLACK M J .Optical flow estimation using a spatial pyramid network[C]∥ Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:4161-4170. |
23 | RONNEBERGER O, FISCHER P, BROX T .U-Net:convolutional networks for biomedical image segmentation[C]∥ Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention.Munich:Springer,2015:234-241. |
24 | WEI Z, YANG C, XUAN Y .Efficient video compressed sensing reconstruction via exploiting spatial-temporal correlation with measurement constraint[C]∥ Proceedings of 2021 IEEE International Conference on Multimedia and Expo.Shenzhen:IEEE,2021:9428203/1-6. |
25 | SUN D, YANG X, LIU M Y,et al .PWC-Net:CNNs for optical flow using pyramid,warping,and cost volume[C]∥ Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:8934-8943. |
26 | CHEN W, YANG C, YANG X .FSOINeT:feature-space optimization-inspired network for image compressive sensing[C]∥ Proceedings of 2022 IEEE International Conference on Acoustics,Speech and Signal Processing.Singapore:IEEE,2022:2460-2464. |
27 | MEHRI A, ARDAKANI P B, SAPPA A D .MPRNet:multi-path residual network for lightweight image super resolution[C]∥ Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision.Waikoloa:IEEE,2021:2704-2713. |
28 | GAO Y, ZHANG M, WANG J,et al .Cross-scale mixing attention for multisource remote sensing data fusion and classification[J].IEEE Transactions on Geoscience and Remote Sensing,2023,61:5507815/1-15. |
29 | SOOMRO K, ZAMIR A R, SHAH M .UCF101:a dataset of 101 human actions classes from videos in the wild[EB/OL].(2012-12-03)[2023-10-08].. |
30 | LOSHCHILOV I, HUTTER F .SGDR:stochastic gradient descent with warm restarts[EB/OL].(2017-05-03)[2023-10-08].. |
31 | SHI W Z, LIU S H, JIANG F,et al .Video compressed sensing using a convolutional neural network[J].IEEE Transactions on Circuits and Systems for Video Technology,2020,31(2):425-438. |
32 | YANG X, YANG C .MAP-inspired deep unfolding network for distributed compressive video sensing[J].IEEE Signal Processing Letters,2023,30:309-313. |
[1] | DU Qiliang, WANG Yimin, TIAN Lianfang. Attention Module Based on Feature Similarity and Feature Normalization [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(7): 62-71. |
[2] | LIU Weirong, ZHANG Zhiqiang, ZHANG Ning, MENG Jiahao, ZHANG Min, LIU Jie. A TT-Tucker Decomposition-Based LC Convolutional Neural Network Compression Method Without Pre-Training [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(7): 29-38. |
[3] | HU Yongjian, ZHUO Sichao, LIU Beibei, WANG Yufei, LI Jicheng. Improvement of Cross-Dataset Performance of Face Forgery Detection Based on Multi-Scale Spatiotemporal Features and Tampering Probabilities [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(6): 110-119. |
[4] | ZHOU Lang, FAN Kun, QU Hua, et al. Forest Fire Recognition by Improved EfficientNet-E Model Based on ECA Attention Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(2): 42-49. |
[5] | QIANG Xuhong, TIAN Weixiao, JIANG Xu, et al. Intelligent Method for Identifying Damage of Steel Members with Localized Random Pitting Based on Convolutional Neural Network [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(11): 43-54. |
[6] | QIANG Ruiru, ZHAO Xiaoqiang. A Small Sample Rolling Bearing Fault Diagnosis Method Based on Gramian Angular Difference Field and Generative Adversarial Network [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(10): 64-75. |
[7] | TIAN Sheng, SONG Lin, ZHAO Kailong. Point Cloud Classification Based on Offset Attention Mechanism and Multi-Feature Fusion [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(1): 100-109. |
[8] | LI Haiyan, YIN Haolin, LI Peng, et al.. Image Inpainting Algorithm Based on Dense Feature Reasoning and Mix Loss Function [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 99-109. |
[9] | LI Jiachun, LI Bowen, LIN Weiwei. AdfNet: An Adaptive Deep Forgery Detection Network Based on Diverse Features [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 82-89. |
[10] | MA Xiaoliang, AN Lingling, DENG Congjian, et al. Translation Optimization Technology of Automatic Speech Recognition Based on Industry-Specific Vocabulary [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(8): 118-125. |
[11] | GUO Enqiang, FU Xinsha. Dropped Object Detection Method Based on Feature Similarity Learning [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 30-41. |
[12] | ZHU Zhengyu, LUO Chao, HE Qianhua, et al. Multi-View Lip Motion and Voice Consistency Judgment Based on Lip Reconstruction and Three-Dimensional Coupled CNN [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(5): 70-77. |
[13] | LU Lu, LAI Jinxiong. Smart Contract Vulnerability Detection Method Based on Capsule Network and Attention Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(5): 36-44. |
[14] | YE Feng, CHEN Biao, LAI Yizong. Contrastive Knowledge Distillation Method Based on Feature Space Embedding [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(5): 13-23. |
[15] | LIU Yupeng, ZHANG Lei. Cognitive Diagnosis Model Integrating Forgetting and Importance of Knowledge Points [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(5): 54-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||