Journal of South China University of Technology(Natural Science Edition) ›› 2023, Vol. 51 ›› Issue (9): 99-109.doi: 10.12141/j.issn.1000-565X.220420
• Computer Science & Technology • Previous Articles Next Articles
LI Haiyan1 YIN Haolin1 LI Peng2 ZHOU Liping2
Received:
2022-07-04
Online:
2023-09-25
Published:
2023-02-08
Contact:
李海燕(1976-),女,教授,博士生导师,主要从事人工智能、图像处理研究。
E-mail:leehy@ynu.edu.cn
About author:
李海燕(1976-),女,教授,博士生导师,主要从事人工智能、图像处理研究。
Supported by:
CLC Number:
LI Haiyan, YIN Haolin, LI Peng, et al.. Image Inpainting Algorithm Based on Dense Feature Reasoning and Mix Loss Function[J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 99-109.
Table 1
Comparison of quantitative indicators between the proposed algorithm and comparison algorithms"
数据集 | 掩膜率 | 算法 | PSNR/dB | SSIM | MSE | FID | LPIPS |
---|---|---|---|---|---|---|---|
CelebA | 30%~40% | PIC | 23.25 | 0.836 5 | 0.027 8 | 65.259 9 | 0.116 7 |
PRVS | 25.05 | 0.856 3 | 0.021 6 | 57.310 6 | 0.088 2 | ||
RFR | 24.92 | 0.852 8 | 0.022 1 | 47.530 4 | 0.077 4 | ||
CTSDG | 25.39 | 0.859 1 | 0.020 4 | 56.690 0 | 0.087 3 | ||
本文所提 | 25.50 | 0.867 9 | 0.020 2 | 41.563 9 | 0.067 2 | ||
40%~50% | PIC | 22.06 | 0.822 8 | 0.032 3 | 70.283 3 | 0.146 5 | |
PRVS | 23.74 | 0.832 4 | 0.025 9 | 66.792 4 | 0.112 3 | ||
RFR | 23.52 | 0.828 7 | 0.026 7 | 52.232 3 | 0.097 8 | ||
CTSDG | 23.67 | 0.831 6 | 0.025 7 | 67.283 6 | 0.115 7 | ||
本文所提 | 24.08 | 0.844 7 | 0.024 4 | 49.450 2 | 0.086 4 | ||
50%~60% | PIC | 20.40 | 0.749 5 | 0.048 3 | 98.730 6 | 0.203 0 | |
PRVS | 22.00 | 0.760 1 | 0.038 2 | 87.411 0 | 0.149 2 | ||
RFR | 22.14 | 0.763 4 | 0.037 9 | 63.751 2 | 0.125 9 | ||
CTSDG | 22.18 | 0.768 0 | 0.037 0 | 84.335 1 | 0.148 3 | ||
本文所提 | 22.53 | 0.780 8 | 0.035 6 | 60.557 1 | 0.111 9 | ||
Paris Street View | 30%~40% | PIC | 21.89 | 0.762 3 | 0.037 9 | 69.887 9 | 0.198 6 |
PRVS | 24.48 | 0.809 6 | 0.025 7 | 54.362 4 | 0.148 4 | ||
RFR | 24.33 | 0.807 2 | 0.026 6 | 47.291 3 | 0.128 9 | ||
CTSDG | 24.59 | 0.816 3 | 0.025 0 | 57.168 7 | 0.143 7 | ||
本文所提 | 24.80 | 0.821 1 | 0.024 8 | 42.174 2 | 0.116 9 | ||
40%~50% | PIC | 20.15 | 0.683 7 | 0.052 5 | 92.187 4 | 0.265 3 | |
PRVS | 22.83 | 0.745 6 | 0.034 8 | 73.046 6 | 0.198 1 | ||
RFR | 22.67 | 0.742 8 | 0.035 9 | 60.992 0 | 0.170 1 | ||
CTSDG | 22.97 | 0.751 9 | 0.033 8 | 75.180 3 | 0.191 4 | ||
本文所提 | 23.04 | 0.759 6 | 0.033 7 | 53.938 7 | 0.155 7 | ||
50%~60% | PIC | 20.46 | 0.661 9 | 0.052 2 | 92.376 3 | 0.276 0 | |
PRVS | 22.59 | 0.720 2 | 0.037 8 | 79.934 8 | 0.213 7 | ||
RFR | 22.40 | 0.717 4 | 0.039 0 | 69.280 2 | 0.186 5 | ||
CTSDG | 22.71 | 0.726 7 | 0.036 9 | 86.129 3 | 0.206 9 | ||
本文所提 | 22.87 | 0.738 3 | 0.036 5 | 63.094 2 | 0.168 7 |
Table 2
Comparison of ablation metrics"
模型 | PSNR/dB | SSIM | MSE | FID | LPIPS |
---|---|---|---|---|---|
无密集连接 | 23.47 | 0.803 9 | 0.032 4 | 62.066 6 | 0.115 0 |
有密集连接 | 23.57 | 0.805 7 | 0.031 1 | 57.810 6 | 0.106 1 |
无注意力传播 | 24.40 | 0.847 7 | 0.024 6 | 40.282 6 | 0.079 1 |
有注意力传播 | 24.50 | 0.850 6 | 0.024 4 | 41.061 3 | 0.082 0 |
单一损失函数 | 24.09 | 0.808 5 | 0.028 9 | 55.088 8 | 0.101 4 |
混合损失函数 | 24.26 | 0.818 0 | 0.028 7 | 59.101 7 | 0.101 5 |
批量归一化 | 23.02 | 0.793 8 | 0.032 7 | 66.446 8 | 0.112 4 |
组归一化 | 23.53 | 0.805 7 | 0.031 1 | 58.324 0 | 0.104 2 |
1 | EFROS A, LEUNG T K .Texture synthesis by non-parametric sampling[C]∥Proceedings of the Seventh IEEE International Conference on Computer Vision.Kerkyra:IEEE,1999:1033-1038. |
2 | CRIMINISI A, PÉREZ P, TOYAMA K .Region filling and object removal by exemplar-based image inpainting[J].IEEE Transactions on Image Processing,2004,13(9):1200-1212. |
3 | BARNES C, SHECHTMAN E, FINKELSTEIN A,et al .PatchMatch:A randomized correspondence algorithm for structural image editing[J].ACM Transactions on Graphics,2009,28(3):1-11. |
4 | HE K, SUN J .Statistics of patch offsets for image completion[C]∥Proceedings of the European Conference on Computer Vision.Heidelberg,Berlin:Springer,2012:16-29. |
5 | MAO X, SHEN C, YANG Y B .Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[J].Advances in Neural Information Processing Systems,2016,29:2810-2818. |
6 | KÖHLER R, SCHULER C, SCHÖLKOPF B,et al .Mask-specific inpainting with deep neural networks[C]∥Proceedings of the German Conference on Pattern Recognition.Cham:Springer,2014:523-534. |
7 | PATHAK D, KRAHENBUHL P, DONAHUE J,et al .Context encoders:Feature learning by inpainting[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:2536-2544. |
8 | LI Y, LIU S, YANG J,et al .Generative face completion[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,Hawaii:IEEE,2017:3911-3919. |
9 | 李海燕,吴自莹,郭磊,等 .基于混合空洞卷积网络的多鉴别器图像修复[J].华中科技大学学报(自然科学版),2021,49(3):40-45. |
LI Haiyan, WU Ziying, GUO Lei,et al .Multi-discriminator image inpainting algorithm based on hybrid dilated convolution network[J].Journal of Huazhong University of Science and Technology (Natural Science Edition),2021,49(3):40-45. | |
10 | ZHAO L, MO Q, LIN S,et al .Uctgan:Diverse image inpainting based on unsupervised cross-space translation[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:5741-5750. |
11 | CAO C, FU Y .Learning a sketch tensor space for image inpainting of man-made scenes[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:14509-14518. |
12 | 刘微容,米彦春,杨帆,等 .基于多级解码网络的图像修复[J].电子学报,2022,50(3):625-636. |
LIU Weirong, MI Yanchun, YANG Fan,et al .Generative image inpainting with multi-stage decoding network[J].Acta Electronica Sinica,2022,50(3):625-636. | |
13 | LIU G, REDA F A, SHIH K J,et al .Image inpainting for irregular holes using partial convolutions[C]∥Proceedings of the European Conference on Computer Vision (ECCV).Munich:Springer,2018:85-100. |
14 | ZHENG C, CHAM T J, CAI J .Pluralistic image completion[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:1438-1447. |
15 | LI J, HE F, ZHANG L,et al .Progressive reconstruction of visual structure for image inpainting[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:5962-5971. |
16 | GUO X, YANG H, HUANG D .Image inpainting via conditional texture and structure dual generation[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:14134-14143. |
17 | LI J, WANG N, ZHANG L,et al .Recurrent feature reasoning for image inpainting[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:7760-7768. |
18 | WU Y, HE K .Group normalization[C]∥Proceedings of the European Conference on Computer Vision (ECCV).Munich:Springer,2018:3-19. |
19 | HUANG G, LIU Z, VAN D M L,et al .Densely connected convolutional networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,Hawaii:IEEE,2017:4700-4708. |
20 | HE K, ZHANG X, REN S,et al .Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,IEEE,2016:770-778. |
21 | RONNEBERGER O, FISCHER P, BROX T .U-Net:Convolutional networks for biomedical image segmentation[C]∥Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241. |
22 | ZHAO H, GALLO O, FROSIO I,et al .Loss functions for image restoration with neural networks[J].IEEE Transactions on Computational Imaging,2016,3(1):47-57. |
[1] | LI Jiachun, LI Bowen, LIN Weiwei. AdfNet: An Adaptive Deep Forgery Detection Network Based on Diverse Features [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 82-89. |
[2] | GUO Enqiang, FU Xinsha. Dropped Object Detection Method Based on Feature Similarity Learning [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 30-41. |
[3] | LIU Yupeng, ZHANG Lei. Cognitive Diagnosis Model Integrating Forgetting and Importance of Knowledge Points [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(5): 54-62. |
[4] | LU Lu, LAI Jinxiong. Smart Contract Vulnerability Detection Method Based on Capsule Network and Attention Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(5): 36-44. |
[5] | WO Yan, LIANG Jiyun, HAN Guoqiang. A cross-modal face retrieval method based on metric learning [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 1-9. |
[6] | YU Ying, HE Penghao, XU Chaoyue . Image Inpainting via Residual Attention Fusion and Gated Information Distillation [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(12): 49-59. |
[7] | YANG Jinsheng, CHEN Hongpeng, GUAN Xin, et al. A Multi-Scale Lightweight Brain Glioma Image Segmentation Network [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(12): 132-141. |
[8] | HUANG Min QI Haitao JIANG Chunlin. Coupled Collaborative Filtering Model Based on Attention Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2021, 49(7): 59-65. |
[9] | LIU Huiting, LI Yinjie, GUO Lingling, et al. Tightly Coupled Recommendation Algorithm Based on Heterogeneous Information Networks [J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(7): 66-75. |
[10] | HU Guanghua, WANG Ning, HE Wenliang, et al. Unsupervised Surface Defect Detection Method Based on Image Inpainting [J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(7): 76-85,124. |
[11] | ZHANG Ruifeng, BAI Jintong, GUAN Xin, et al. Music Source Separation Method Based on Unet Combining SE and BiSRU [J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(11): 106-115,134. |
[12] | IKA Novita Dewi, CAI Xiaoling, et al. Drug-Drug Interaction Extraction Model Combining Category Keywords with Attention Mechanism [J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(1): 10-17. |
[13] | LIU Huiting, JI Qiang, LIU Huimin, et al. Joint Deep Recommendation Model Based on Double-Layer Attention Mechanism [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(6): 97-105. |
[14] | Wang Wei-ning Liu Jian-cong Xu Xiang-min Jiang Yi-zi Wang Li. Aesthetic Enhancement of Images Based on Photography Composition Guidelines [J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(5): 51-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||