华南理工大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (7): 56-65.doi: 10.12141/j.issn.1000-565X.210651

• 交通运输工程 • 上一篇    下一篇

“轨道交通微中心”理念下的慢行影响区范围确定方法

陈廷照1 陈艳艳1 王子理2 郭继孚3   

  1. 1.北京工业大学 城市交通学院, 北京 100124
    2.济南市道路和桥隧服务中心, 山东 济南 250101
    3.北京交通发展研究院, 北京 100161
  • 收稿日期:2021-10-12 出版日期:2022-07-25 发布日期:2022-02-06
  • 通信作者: 陈艳艳(1970-),女,教授,博士生导师,主要从事交通运输规划与管理及大数据挖掘研究。 E-mail:cdyan@bjut.edu.cn
  • 作者简介:陈廷照(1993-),女,博士生,主要从事交通出行行为、大数据挖掘研究。E-mail:ctzlzhao@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFB1600900)

Methods of Determining the Range of Non-motorized Travel Influence Area Under the Concept of “Metro Transit Micro-center”

CHEN Tingzhao1 CHEN Yanyan1 WANG Zili2 GUO Jifu3   

  1. 1.College of Metropolitan Transportation,Beijing University of Technology,Beijing 100124,China
    2.Jinan Road,Bridge and Tunnel Service Center,Jinan 250101,Shandong,China
    3.Beijing Transport Institute,Beijing 100161,China
  • Received:2021-10-12 Online:2022-07-25 Published:2022-02-06
  • Contact: 陈艳艳(1970-),女,教授,博士生导师,主要从事交通运输规划与管理及大数据挖掘研究。 E-mail:cdyan@bjut.edu.cn
  • About author:陈廷照(1993-),女,博士生,主要从事交通出行行为、大数据挖掘研究。E-mail:ctzlzhao@163.com
  • Supported by:
    the National Key Research and Development Program of China(2018YFB1600900)

摘要:

为响应北京地铁站周边用地一体化、打造轨道微中心的理念,本研究利用多源大数据,从公共客流、路网设计、人口密度和用地多样性等方面提取了23个影响因素,定量地刻画站点慢行影响区内的建成环境及出行特征,其中重点考虑了共享单车的接驳特征。为了弥补以往以出行者的步行时间确定轨道站点影响范围的不足,提出了融合主成分分析和K-均值聚类的站点分类模型去划定慢行影响区的范围。以北京市为例,站点影响区被分为4簇:接驳低效-连通度弱-居住主导型,接驳高效-连通度高-均衡型,接驳高效-连通度弱-混合型,接驳高效-连通度高-工作主导型。为了验证聚类的合理性,利用空间自相关的方法判断簇内指标的空间依赖性,结果显示簇1、3、4的空间分布与随机模式没有显著的差异,而簇2接驳高效-连通度高-均衡型站点在空间上存在一定的自相关特性。最后,基于聚类结果定义了轨道站点的慢行影响范围,分别为2 000、1 600、1 600、1 700 m。不同轨道站点类型慢行影响范围的明确,有助于城市规划者确定轨道微中心的建设范围,也可为以公共交通为主导的城市模式开发奠定基础。

关键词: 轨道微中心, 影响因素, 主成分分析, K-均值聚类, 慢行影响区

Abstract:

In response to the concept of land-use integration and creating micro-center around metro station in Beijing, this study extracted 23 quantitative indicators from public passenger flow, road network design, population density and land diversity to quantitatively analyze the built environment and travel characteristics of the non-motorized influence area based on multi-source big data. The connection characteristics of shared bicycles were taken into particular consideration. In order to compensate for the shortcomings of determining the influence range of metro stations by the traveler’s walking time, a classification model incorporating principal component analysis and K-means clustering was proposed to define the non-motorized influence area. Taking Beijing as an example, the study divided the metro stations into 4 clusters: inefficient connection-weak connectivity-residence oriented, efficient connection-high connectivity-balanced, efficient connection-weak connectivity-mixed, and efficient connection-high connectivity-work oriented. In order to verify the rationality of the clustering, the spatial auto-correlation was used to judge the spatial dependence of indicators. The results show that the spatial distributions of clusters 1, 3 and 4 do not differ significantly from the random model, while cluster 2 efficient connection-high connectivity-balanced stations has auto-correlation characteristics in space. Finally, based on the clustering results, the non-motorized influence areas of the metro stations were delineated as 2 000, 1 600, 1 600, and 1 700 m, respectively. The clarification of the non-motorized influence range of different metro station types can help urban planners determine the scope of micro-center construction and also lay the foundation for transport-oriented development of urban in the future.

Key words: metro micro-center, influence factor, principal component analysis, K-means clustering, non-motorized travel influence area

中图分类号: