华南理工大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (8): 1-11.doi: 10.12141/j.issn.1000-565X.220779

所属专题: 2023年交通运输工程

• 交通运输工程 • 上一篇    下一篇

搭接相位信号交叉口非机动车过街行为分析

温惠英 刘浩 杜颖新 赵胜   

  1. 华南理工大学 土木与交通学院,广东 广州 510640
  • 收稿日期:2022-11-27 出版日期:2023-08-25 发布日期:2023-03-07
  • 通信作者: 赵胜(1988-),男,博士,主要从事道路交通安全研究。 E-mail:ctszhao@scut. edu. cn
  • 作者简介:温惠英(1965-),女,教授,博士生导师,主要从事交通规划、交通安全研究。E-mail: hywen@scut. edu. cn
  • 基金资助:
    国家自然科学基金资助项目(52172345)

Analysis of Crossing Behavior of Non-Motor Vehicle at Overlap Phase Signal Intersections

WEN Huiying LIU Hao DU Yingxin ZHAO Sheng   

  1. School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2022-11-27 Online:2023-08-25 Published:2023-03-07
  • Contact: 赵胜(1988-),男,博士,主要从事道路交通安全研究。 E-mail:ctszhao@scut. edu. cn
  • About author:温惠英(1965-),女,教授,博士生导师,主要从事交通规划、交通安全研究。E-mail: hywen@scut. edu. cn
  • Supported by:
    the National Natural Science Foundation of China(52172345)

摘要:

为提高信号交叉口非机动车通行的安全水平,本研究以广州市典型的搭接相位控制信号交叉口的调查数据为基础,基于C5.0决策树算法对非机动车过街行为进行影响因素分析。考虑到一个信号周期内的不同时段对非机动车过街行为的影响,本研究将一个完整的信号周期按照非机动车过街的风险冲突划分为对向绿灯风险期、同向绿灯安全期、同向绿灯风险期和垂直方向风险期4个风险时段,并根据非机动车在交叉口的等待选择和闯红灯情况将过街行为分为冒险型、机会型和守法型3类,通过构建C5.0决策树模型分别研究3类过街行为的影响因素并分析评价模型的分类效果。结果表明:决策树模型分类结果的整体准确率大于83.04%,AUC(受试者工作特征曲线下的面积)值大于0.880,模型预测精度较优;搭接相位控制信号交叉口非机动车的过街行为主要与交通环境显著相关,而与骑手的行为因素显著性较低,到达风险期、非机动车信号灯设施、冲突机动车流量、车道数和过街风险对冒险型过街行为的发生存在显著影响,其中到达风险期为最主要的影响因素;车道数、红灯时间和到达风险期对机会型过街行为的发生存在显著影响,其中车道数为最主要的影响因素;冲突机动车流量、信号周期、车道数、过街区域和过街风险对守法型过街行为的发生存在显著影响,其中冲突机动车流量为最主要的影响因素。

关键词: 非机动车, 过街行为, 影响因素分析, 搭接相位, C5.0决策树

Abstract:

In order to improve the safety level of non-motor vehicle traffic at signalized intersections, based on the survey data of signalized intersections with overlapping phase control in Guangzhou, this study analyzed the influencing factors of non-motor vehicle crossing behavior based on the C5.0 decision tree algorithm. Considering the influence of different periods on the crossing behavior of non-motor vehicles in the signal cycle, the study divided a complete signal cycle into four risk periods according to the risk conflict of non-motorized vehicles crossing the street, namely, the opposite green light risk period, the same direction green light safety period, the same direction green light risk period and the vertical direction risk period. And it divided the crossing behavior into three categories according to the waiting selection of non-motor vehicles at the intersection and whether or not to run red-light, namely, risky, opportunistic and law-abiding. It studied the influencing factors of the three types of crossing behavior by constructing a C5.0 decision tree model and analyzed and evaluated the classification effect of the model. The results show that the overall accuracy of the model classification results is greater than 83.04%, the AUC is greater than 0.880, and the model prediction accuracy is good. The crossing behavior of non-motorized vehicles at signalized intersections with overlapping phase control is mainly significantly related to the traffic environment, while the factors related to the rider’s behavior are less significant. The arrival risk period, non-motor vehicle signal light facilities, conflicting motor traffic flow, number of lanes and crossing risk have significant impacts on the occurrence of risk-taking crossing behavior, among which the arrival risk period is the most important influencing factor. The number of lanes, red-light time and arrival risk period have significant impacts on the occurrence of opportunistic crossing behavior, among which the number of lanes is the most important influencing factor. The conflicting motor traffic flow flow, signal period, number of lanes, crossing area and crossing risk have significant impacts on the occurrence of law-obeying crossing behavior, among which the conflicting motor traffic flow is the most important influencing factor.

Key words: non-motor vehicle, crossing behavior, analysis of influencing factor, overlap phase, C5.0 decision tree

中图分类号: