华南理工大学学报(自然科学版) ›› 2010, Vol. 38 ›› Issue (1): 76-80.doi: 10.3969/j.issn.1000-565X.2010.01.015

• 计算机科学与技术 • 上一篇    下一篇

基于Granger因果检验和PCA的脑网络效应连接方法

钟元1 王慧南1 焦青2  张志强2  郑罡1 于海燕1 卢光明2   

  1. 1.南京航空航天大学 自动化学院, 江苏 南京 210016;  2. 南京军区南京总医院 医学影像科, 江苏 南京 210002
  • 收稿日期:2009-01-13 修回日期:2009-09-14 出版日期:2010-01-25 发布日期:2010-01-25
  • 通信作者: 钟元(1980-),男,博士生,主要从事信号图像处理、人脑功能、认知神经学研究. E-mail:fmrizhongy@gmail.com
  • 作者简介:钟元(1980-),男,博士生,主要从事信号图像处理、人脑功能、认知神经学研究.
  • 基金资助:

    国家自然科学基金青年科学基金资助项目(30800264);国家自然科学基金资助项目(30470510,30670600)

Effective Connectivity of Brain Network Based on Granger Causality and PCA

Zhong YuanWang Hui-nan1  Jiao Qing2  Zhang Zhi-qiang2  Zheng Gang1  Yu Hai-yan1  Lu Guang-ming2   

  1. 1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China; 2. Department of Medical Imaging, Nanjing Genaral Hospital of Nanjing Military Command of PLA, Nanjing 210002, Jiangsu, China
  • Received:2009-01-13 Revised:2009-09-14 Online:2010-01-25 Published:2010-01-25
  • Contact: 钟元(1980-),男,博士生,主要从事信号图像处理、人脑功能、认知神经学研究. E-mail:fmrizhongy@gmail.com
  • About author:钟元(1980-),男,博士生,主要从事信号图像处理、人脑功能、认知神经学研究.
  • Supported by:

    国家自然科学基金青年科学基金资助项目(30800264);国家自然科学基金资助项目(30470510,30670600)

摘要: 为了提高脑功能效应连接网络检测的可靠性,提出了一种基于Granger因果关系检验和主成分分析(PCA)的功能磁共振(fMRI)数据效应连接方法.该方法首先通过PCA提取感兴趣区域内fMRI信号的时间主成分,以此特征作为时间参考信息,然后计算参考信息与大脑其余每个体素之间的Granger因果关系,并映射到全脑,形成Granger因果图(GCM).理论推导阐明了所提方法的有效性.采用该方法研究人脑运动功能脑区在手动任务下的效应连接GCM,结果验证了运动功能神经网络理论

关键词: Granger因果关系, 主成分分析, 效应连接, 手动任务, 功能磁共振

Abstract:


In order to improve the detection reliability of effective connectivity in brain network, an fMRI (Functional Magnetic Resonance Imaging) analytical approach of effective connectivity is proposed based on the Granger causality (GC) and the principle component analysis (PCA). In this approach, first, temporal principal components are extracted via the PCA from the fMRI signals in the region of interest, and the patterns are considered as temporal reference information. Next, the Granger causality between the reference region and each of other voxels of the brain is calculated. Then, the results are mapped into the whole brain and a Granger causality map (GCM) is thus obtained. Moreover, a theoretical derivation is performed to verify the effectiveness of the proposed approach. The proposed approach is finally used t'o analyze the GCM of a manual movement task-induced activation in the motor area, the results verifying the correctness of theory of motor-function neural network

Key words: Granger causality, principal component analysis, effective connectivity, functional magnetic resonance imaging