华南理工大学学报(自然科学版) ›› 2010, Vol. 38 ›› Issue (1): 18-21.doi: 10.3969/j.issn.1000-565X.2010.01.004

• 电子、通信与自动控制 • 上一篇    下一篇

一种混沌伪随机序列复杂度分析方法

罗松江 丘水生 陈旭   

  1. 华南理工大学 电子与信息学院, 广东 广州 510640
  • 收稿日期:2009-01-12 修回日期:2009-07-20 出版日期:2010-01-25 发布日期:2010-01-25
  • 通信作者: 罗松江(1973-),男,博士,仲恺农业工程学院讲师,主要从事混沌保密通信研究. E-mail:wangxxd@163.com
  • 作者简介:罗松江(1973-),男,博士,仲恺农业工程学院讲师,主要从事混沌保密通信研究.
  • 基金资助:

    国家自然科学基金资助项目(60372004)

A Way to Complexity Analysis of Chaotic Pseudorandom Sequence

Luo Song-jiang  Qiu Shui-sheng  Chen Xu   

  1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, Guangdong,
  • Received:2009-01-12 Revised:2009-07-20 Online:2010-01-25 Published:2010-01-25
  • Contact: 罗松江(1973-),男,博士,仲恺农业工程学院讲师,主要从事混沌保密通信研究. E-mail:wangxxd@163.com
  • About author:罗松江(1973-),男,博士,仲恺农业工程学院讲师,主要从事混沌保密通信研究.
  • Supported by:

    国家自然科学基金资助项目(60372004)

摘要: 为衡量混沌伪随机序列的随机本质,文中提出用增强统计复杂度方法分析混沌伪随机序列的复杂度.以Logistic映射和耦合映像格子映射产生的混沌序列和多进制混沌伪随机序列为例,说明了该方法的应用;通过改进排列模式,使之对二进制混沌伪随机序列同样适用.实验结果表明该方法能呈现序列的相关结构,反映序列的随机本质,可用于准确度量混沌系统产生的伪随机序列的复杂度,且计算简单

关键词: 混沌 , 伪随机序列, 增强统计, 复杂度

Abstract:

In order to measure the random essential of chaotic pseudorandom sequences, a method based on the intensive statistical complexity is proposed and is used to analyze the complexity of a chaotic pseudorandom sequence. Then, based on the chaotic sequence and the octal chaotic pseudorandom sequence produced by both the Logistic map and the coupled map lattice, an example is persented to demonstrate how the method works. Moreover, an improvement of permutation patterns is performed to make the method applicable to binary chaotic pseudorandom sequences. Experimental results indicate that the proposed method well presents the related structure and reflects the random essential of the sequence, and that it is suitable for the complexity measurement of different chaotic pseudorandom sequences produced by the chaotic system with simple computation.

Key words: chaos, pseudorandom sequence, intensive statistical complexity