华南理工大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (2): 33-41,57.doi: 10.12141/j.issn.1000-565X.210054

所属专题: 2022年交通运输工程

• 交通运输工程 • 上一篇    下一篇

基于力驱动的智能汽车路径跟踪控制策略

姚强强 田颖 王圣渊 刘嘉琪 王承强   

  1. 北京交通大学 新能源汽车动力总成技术北京市重点实验室,北京 100044
  • 收稿日期:2021-01-29 修回日期:2021-05-26 出版日期:2022-02-25 发布日期:2022-02-01
  • 通信作者: 姚强强(1992-),男,博士生,主要从事车辆动力学及控制、智能驾驶研究 E-mail:18116027@bjtu.edu.cn
  • 作者简介:姚强强(1992-),男,博士生,主要从事车辆动力学及控制、智能驾驶研究
  • 基金资助:
    国家重点研发计划项目(2017YFB0103701);中央高校基本科研业务费专项资金资助项目(2019YJS159)

Research on Path Tracking Control Strategy of Intelligent Vehicles Based on Force Drive

YAO Qiangqiang TIAN Ying WANG Shengyuan LIU Jiaqi WANG Chengqiang   

  1. Beijing Key Laboratory of Powertrain for New Energy Vehicle,Beijing Jiaotong University,Beijing 100044,China
  • Received:2021-01-29 Revised:2021-05-26 Online:2022-02-25 Published:2022-02-01
  • Contact: 姚强强(1992-),男,博士生,主要从事车辆动力学及控制、智能驾驶研究 E-mail:18116027@bjtu.edu.cn
  • About author:姚强强(1992-),男,博士生,主要从事车辆动力学及控制、智能驾驶研究
  • Supported by:
    Supported by the National Key Research and Development Plan(2017YFB0103701)

摘要: 为提高高速大曲率工况下智能汽车的路径跟踪控制精度,保证车辆横摆稳定性和侧倾稳定性,提出基于最优前轮侧向力和附加横摆力矩协同的力驱动模型预测控制(MPC)路径跟踪控制策略。充分利用轮胎非线性动力学特性,提高控制器的响应性能,构建基于时变线性轮胎模型的路径跟踪控制系统状态空间方程,预测车辆状态信息。采用零点力矩法建立车辆侧倾稳定性约束条件,设计基于MPC的防侧倾路径跟踪控制器。CarSim与Matlab/Simulink联合仿真结果表明,该控制器在保证车辆横摆稳定性和侧倾稳定性的前提下,高速大曲率工况下的最大横向位置偏差和航向角偏差分别降低14.08%和4.80%,低附着高速变道工况下分别降低22.95%和16.77%,说明所提出的控制器可显著改善车辆路径跟踪效果。

关键词: 智能汽车, 模型预测控制, 侧倾稳定性, 路径跟踪, 力驱动

Abstract: In order to improve the path tracking control accuracy of intelligent vehicles and ensure vehicle yaw stability and roll stability, a MPC path tracking control strategy based on force drive coordinating optimal front tires lateral force and external yaw moment is proposed under high-speed and large curvature extreme conditions. Aiming at taking full advantage of the non-linear dynamics of tires and improving the response characteristics of the controller, a vehicle state prediction equation based on a time-varying linear tire model is established to predict vehicle states at the MPC control frame. The zero-point moment method is used to ensure the vehicle roller stability at the limit of handling, and the anti-roll MPC path tracking controller is designed based on time-varying state space equation of path tracking control system. In order to verify the effectiveness of the proposed control strategy, experiments were carried out through the CarSim and Matlab/Simulink joint platform. The results show that the controller can ensure the yaw stability and roll stability of the vehicle and reduce the maximum lateral position deviation and heading angle deviation by 14.08% and 4.80%, respectively.

Key words: intelligent vehicle, model predictive control, roll stability, path tracking, force drive

中图分类号: