华南理工大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (6): 52-61.doi: 10.12141/j.issn.1000-565X.220535

所属专题: 2023年交通运输工程

• 交通运输工程 • 上一篇    下一篇

基于粒子群优化的主动稳定杆系统自抗扰控制

赵强1 刘传卫1 张娜2 朱宝全1 谢春丽1   

  1. 1.东北林业大学 机电工程学院,黑龙江 哈尔滨 150040
    2.黑龙江科技大学 电气与控制工程学院,黑龙江 哈尔滨 150022
  • 收稿日期:2022-08-19 出版日期:2023-06-25 发布日期:2022-12-06
  • 通信作者: 刘传卫(1994-),男,硕士生,主要从事车辆动力学及控制研究。 E-mail:1436255322@qq.com
  • 作者简介:赵强(1971-),男,教授,博士生导师,主要从事车辆动力学及控制研究。E-mail:zhaoqiang@nefu.edu.cn
  • 基金资助:
    国家重点研发计划重点专项(2017YFC0803901);黑龙江省重点研发计划项目(JD22A014);黑龙江省自然科学基金资助项目(LH2021F002)

Active Disturbance Rejection Control of Active Stabilizer System Based on Particle Swarm Optimization

ZHAO Qiang1 LIU Chuanwei1 ZHANG Na2 ZHU Baoquan1 XIE Chunli1   

  1. 1.College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150040,Heilongjiang,China
    2.School of Electrical and Control Engineering,Heilongjiang University of Science and Technology,Harbin 150022,Heilongjiang,China
  • Received:2022-08-19 Online:2023-06-25 Published:2022-12-06
  • Contact: 刘传卫(1994-),男,硕士生,主要从事车辆动力学及控制研究。 E-mail:1436255322@qq.com
  • About author:赵强(1971-),男,教授,博士生导师,主要从事车辆动力学及控制研究。E-mail:zhaoqiang@nefu.edu.cn
  • Supported by:
    the Key Projects of National Key Research & Development Program of China(2017YFC0803901);the Heilongjiang Province Key Research & Development Project(JD22A014);the Natural Science Foundation of Heilongjiang Province(LH2021F002)

摘要:

为了提高车辆的抗侧倾能力,设计了液压马达驱动式主动稳定杆控制系统,提出了基于粒子群优化(PSO)算法的分层控制策略。上层自抗扰控制器(ADRC)计算出整车所需反侧倾力矩,整车所需要的反侧倾力矩经过分配器分配到前后轴,下层三闭环比例-积分-微分控制器(PID)接收到所要提供的反侧倾力矩后计算出控制电流输入到伺服阀,从而驱动马达输出轴旋转并通过稳定杆产生主动力矩,实现车辆的主动防侧倾控制。为了使控制器有更好的控制效果,采用PSO算法整体优化上、下层控制,优化后的ADRC和PID参数再输入到整车模型中,为了使仿真接近实际效果,把实验测得的横向稳定杆扭转刚度也代入到模型中。在C级路面上采用蛇形和双移线工况进行仿真,通过将PSO优化的自抗扰系统与被动系统、PID控制系统和未优化的自抗扰控制系统对比进行仿真验证。仿真数据表明:侧倾角的大小直接影响车辆侧倾稳定性,采用PSO算法优化的分层控制策略能显著降低车辆的侧倾角,有效抑制过度的车身侧倾运动带来的不稳定性;主动控制的稳定杆比传统被动式稳定杆能更好地给车辆提供所需要的反侧倾力矩,提高了车辆抗侧倾能力;优化后的ADRC控制器比被动系统和未优化的ADRC控制器有更好的主动控制效果,相同工况下侧倾角更小,抗侧倾能力更强,优化后的三闭环PID响应速度更快,有更佳的跟随性能。

关键词: 主动稳定杆, 液压马达, 自抗扰控制器, 粒子群优化算法, 侧倾稳定性

Abstract:

In order to improve the anti-roll ability of vehicle, this paper designed a hydraulic motor-driven active stabilizer control system, and proposed a hierarchical control strategy based on particle swarm optimization (PSO) algorithm. The upper active disturbance rejection controller (ADRC) calculates the anti-roll torque required by the whole vehicle, and the anti-roll torque required by the whole vehicle is distributed to the front and rear axles through a distributor. The lower three-loop proportional-integral-differential (PID) controller receives the anti-roll torque to be provided, calculates the control current and inputs it to the servo valve, so as to drive the motor output shaft to rotate and generates the active torque through the stabilizer bar to realize the active anti-roll control of the vehicle. In order to make the controller has better control effect, the PSO algorithm was used to optimize the upper and lower control as a whole, and the optimized ADRC and PID parameters were input into the vehicle model. In order to make the simulation close to the actual effect, the torsional stiffness of the lateral stabilizer bar measured by the experiment was also brought into the model. The serpentine and double lane shifting conditions were used for simulation on Class C road surface, and the simulation verification was carried out by comparing PSO-optimized ADRC system with passive system, PID control system and unoptimized ADRC system. The simulation data show that the roll angle directly affects the vehicle’s roll stability, the hierarchical control strategy optimized by PSO algorithm can significantly reduce the vehicle’s roll angle, and effectively suppress the instability caused by excessive body roll motion. The active control stabilizer can better provide the required anti-roll torque for the vehicle than the traditional passive stabilizer, and improve the anti-roll ability of the vehicle. The optimized ADRC controller has better active control effect than the passive system and the unoptimized ADRC controller. Under the same working condition, the roll angle is smaller, the anti-roll ability is stronger, the optimized three closed-loop PID response speed is faster, and the tracking performance is better.

Key words: active stabilizer bar, hydraulic motor, active disturbance rejection controller, particle swarm optimization algorithm, roll stability

中图分类号: