华南理工大学学报(自然科学版) ›› 2019, Vol. 47 ›› Issue (3): 61-69.doi: 10.12141/j.issn.1000-565X.180323

• 机械工程 • 上一篇    下一篇

基于激光点云的车辆外廓尺寸动态测量方法

张立斌1 吴岛1 单洪颖2† 刘琦烽1   

  1. 1. 吉林大学 交通学院,吉林 长春 130022; 2. 吉林大学 机械与航空航天工程学院,吉林 长春 130022
  • 收稿日期:2018-06-28 修回日期:2018-12-04 出版日期:2019-03-25 发布日期:2019-01-31
  • 通信作者: 单洪颖( 1973-) ,女,副教授,主要从事生产制造系统仿真研究. E-mail:shan-hy@jlu.edu.cn
  • 作者简介:张立斌( 1971-) ,男,教授,博士生导师,主要从事汽车检测与诊断研究
  • 基金资助:
    国家自然科学基金资助项目( 50775094) ; 吉林省科技发展计划项目( 20150204025GX)

Dynamic Measurement Method for Vehicle Contour Dimensions Based on Laser Point Cloud

 ZHANG Libin1 WU Dao 1 SHAN Hongying2 LIU Qifeng1   

  1.  1. School of Transportation,Jilin University,Changchun 130022,Jilin,China; 2. School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,Jilin,China
  • Received:2018-06-28 Revised:2018-12-04 Online:2019-03-25 Published:2019-01-31
  • Contact: 单洪颖( 1973-) ,女,副教授,主要从事生产制造系统仿真研究. E-mail:shan-hy@jlu.edu.cn
  • About author:张立斌( 1971-) ,男,教授,博士生导师,主要从事汽车检测与诊断研究
  • Supported by:
    Supported by the National Natural Science Foundation of China( 50775094) and the Science and Technology Development Program of Jilin Province( 20150204025GX)

摘要: 为解决车辆外廓尺寸测量中存在的测量准确度低、重复性差及三维轮廓重构质 量差的问题,提出一种基于激光点云的动态测量方法. 首先基于车辆外廓尺寸动态测量原 理,对系统测量方案进行了设计. 然后为去除激光雷达在采集过程中产生的噪声和冗余数 据,基于 kd-tree 建立点云空间拓扑关系并采用邻域平均法实现点云数据的去噪,借助最 小二乘法判断局部曲率特征对点云数据进行精简,并通过边界点识别算法对边界特征进 行保护. 最后通过实车试验对所提方法进行验证,并设计出反光镜滤除方案及曲线行驶矫 正模型,实现对试验结果的进一步优化. 试验结果表明: 4 种车型的示值误差均小于 1% , 重复性最大为 0. 48% ,具有较高的准确度和较好的稳定性,满足国家标准要求; 根据车辆 三维轮廓重构模型,可对超限位置快速定位.

关键词: 外廓尺寸, 激光雷达, kd-tree, 点云数据, 最小二乘, 三维轮廓重构

Abstract: A dynamic measurement method based on laser point cloud was proposed in order to solve the problem of low measurement accuracy,poor repeatability and poor reconstruction quality of three-dimensional ( 3D) contour in the measurement of vehicle contour dimension. Firstly,the method was based on the measuring principle of vehicle contour dimension,and the system measurement scheme was designed. Then,in order to remove the noise and redundant data generated by lidar during data collection,the topology of the point cloud was established based on kd-tree and the neighborhood averaging method was used to denoise the point cloud data,and the point cloud data were simplified by using the least square method to judge the local curvature features,and the boundary features were protected by the boundary point recognition algorithm. Finally,the proposed method was verified by the real vehicle test,and the reflector filter and the curve correction model were designed to further optimize the test result. The test results show that the indicating errors of four types of vehicles are all less than 1% ,with a maximum repeatability of 0. 48% ,which has higher accuracy and better stability to meet the national standard requirements. According to the 3D contour reconstruction model of vehicle,it can locate out-of-gauge position quickly.

Key words: contour dimension, lidar, kd-tree, point cloud data, least square, 3D reconstruction

中图分类号: