Journal of South China University of Technology(Natural Science Edition) ›› 2024, Vol. 52 ›› Issue (11): 83-94.doi: 10.12141/j.issn.1000-565X.240064
• Intelligent Transportation System • Previous Articles Next Articles
WANG Jiangfeng(), DING Weidong, LUO Dongyu, LI Yunfei, QI Chongkai, DONG Honghui
Received:
2024-02-05
Online:
2024-11-25
Published:
2024-06-07
About author:
王江锋(1976—),男,教授,博士生导师,主要从事智能交通及车辆研究。E-mail:wangjiangfeng@bjtu.edu.cn
Supported by:
CLC Number:
WANG Jiangfeng, DING Weidong, LUO Dongyu, et al. Joint Prediction Model of Multi-Modal Transportation Passenger Flow Based on Hypergraph Convolution[J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(11): 83-94.
Table 1
Description of passenger swiping card data"
交通方式 | 序号 | 字段 | 数据描述 |
---|---|---|---|
公交 | 1 | BUSDATA_ID | 刷卡ID,18开头的11位数 |
2 | DEAL_TIME | 交易时间,20160307000000~20160313240000 | |
3 | UP_TIME | 更新时间,20160307000000~20160313240000 | |
4 | LINE_CODE | 线路代码 | |
5 | VEHICLE_CODE | 车辆代码 | |
6 | ON_STATION | 上车站点编号 | |
7 | OFF_STATION | 下车站点编号 | |
地铁 | 1 | GRANT_CARD_CODE | 刷卡ID,10000~99999999 |
2 | ENTRY_NUM | 进入站点编号 | |
3 | EXIT_NUM | 离开站点编号 | |
4 | ENTRY_TIME | 进站时间,20160307000000~20160313240000 | |
5 | DEAL_TIME | 交易时间,20160307000000~20160313240000 | |
6 | ENTRY_STATION | 进入站点名称 | |
7 | EXIT_STATION | 离开站点名称 |
Table 2
Performance comparison of different models"
模型 | 公交 | 地铁 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | |||||||||
0.5 h | 1.0 h | 2.0 h | 0.5 h | 1.0 h | 2.0 h | 0.5 h | 1.0 h | 2.0 h | 0.5 h | 1.0 h | 2.0 h | |
HA | 35.43 | 47.08 | 65.57 | 44.64 | 55.50 | 89.48 | 55.74 | 73.83 | 108.56 | 88.62 | 121.30 | 182.29 |
ARIMA | 32.31 | 43.63 | 63.97 | 40.17 | 54.59 | 85.17 | 53.67 | 75.31 | 102.63 | 85.79 | 120.54 | 173.84 |
RF | 30.93 | 36.02 | 41.82 | 44.24 | 50.98 | 57.54 | 56.65 | 68.94 | 85.81 | 93.81 | 115.55 | 150.00 |
MLP | 36.28 | 46.08 | 56.70 | 50.13 | 63.19 | 77.69 | 55.83 | 61.90 | 91.63 | 86.51 | 102.61 | 154.77 |
LSTM | 36.38 | 39.38 | 41.36 | 45.58 | 49.42 | 51.69 | 50.67 | 61.63 | 75.68 | 86.51 | 102.90 | 128.55 |
GRNN | 32.58 | 36.43 | 41.09 | 44.37 | 49.92 | 55.97 | 51.45 | 62.42 | 77.99 | 87.61 | 113.04 | 145.67 |
T-GCN | 28.89 | 31.10 | 35.63 | 40.36 | 46.75 | 51.91 | 52.82 | 58.26 | 78.52 | 74.85 | 93.11 | 124.96 |
S-TGCN | 23.58 | 30.25 | 34.87 | 37.78 | 48.58 | 50.09 | 43.66 | 53.45 | 70.04 | 70.84 | 90.52 | 121.34 |
DCRNN | 23.21 | 26.19 | 32.39 | 37.54 | 43.03 | 48.63 | 43.01 | 54.98 | 67.65 | 71.10 | 88.13 | 116.80 |
BSTHCN | 22.34 | 23.85 | 28.73 | 36.18 | 38.45 | 45.64 | 40.69 | 49.12 | 61.85 | 69.28 | 81.55 | 100.73 |
Table 3
Ablation analysis of different BSTHCN components"
模型 | 公交 | 地铁 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | |||||||||
0.5 h | 1.0 h | 2.0 h | 0.5 h | 1.0 h | 2.0 h | 0.5 h | 1.0 h | 2.0 h | 0.5 h | 1.0 h | 2.0 h | |
-Gmerge | 23.19 | 25.34 | 32.77 | 38.56 | 41.12 | 50.28 | 45.95 | 53.34 | 68.28 | 73.35 | 91.73 | 118.48 |
N-G | 22.77 | 25.51 | 32.74 | 36.88 | 40.96 | 50.26 | 43.88 | 53.12 | 66.79 | 73.67 | 87.36 | 113.54 |
-Gmerge & N-G | 25.17 | 27.80 | 34.95 | 40.27 | 47.00 | 54.42 | 49.35 | 57.23 | 72.73 | 91.04 | 98.80 | 130.79 |
BSTHCN | 22.34 | 23.85 | 28.73 | 36.18 | 38.45 | 45.64 | 40.69 | 49.12 | 61.85 | 69.28 | 81.55 | 100.73 |
1 | LEI D, CHEN X, CHENG L,et al .Inferring temporal motifs for travel pattern analysis using large scale smart card data[J].Transportation Research Part C:Emerging Technologies,2020,120:102810/1-21. |
2 | LIANG Y, HUANG G, ZHAO Z .Joint demand prediction for multimodal systems:a multi-task multi-relational spatiotemporal graph neural network approach[J].Transportation Research Part C:Emerging Technologies,2022,140:103731/1-19. |
3 | 刘静,关伟 .交通流预测方法综述[J].公路交通科技,2004,21(3):82-85. |
LIU Jing, GUAN Wei .A summary of traffic flow forecasting methods[J].Journal of Highway and Transportation Research and Development,2004,21(3):82-85. | |
4 | ZHANG N, ZHANG Y, LU H .Seasonal autoregressive integrated moving average and support vector machine models[J].Transportation Research Record,2011,2215 (1):85-92. |
5 | FILIPOVSKA M, MAHMASSANI H S .Traffic flow breakdown prediction using machine learning approaches[J].Transportation Research Record,2020,2674(10):560-570. |
6 | BRATSAS C, KOUPIDIS K, SALANOVA J M,et al .A comparison of machine learning methods for the pre-diction of traffic speed in urban places[J].Sustainability,2020,12:142/1-15. |
7 | ZHAO Z, CHEN W, WU X,et al .LSTM network:a deep learning approach for short-term traffic forecast[J].IET Intelligent Transport Systems,2017,11(2):68-75. |
8 | TAN Y, LIU H, PU Y,et al .Passenger flow prediction of integrated passenger terminal based on K-Means-GRNN[J].Journal of Advanced Transportation,2021,2021:1055910/1-14. |
9 | 赵建东,朱丹,刘佳欣 .基于时间序列分解与门控循环单元的地铁换乘客流预测[J].华南理工大学学报(自然科学版),2022,50(5):22-31. |
ZHAO Jiandong, ZHU Dan, LIU Jiaxin .Metro transfer passenger flow prediction based on STL-GRU[J].Journal of South China University of Technology (Natural Science Edition),2022,50(5):22-31. | |
10 | ZHANG J B, ZHENG Y, QI D K .Deep spatio-temporal residual networks for citywide crowd flows prediction[C]∥Proceedings of the 31st AAAI Conference on Artificial Intelligence.San Francisco:AAAI,2017:1655-1661. |
11 | GUO S N, LIN Y F, LI S J,et al .Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J].IEEE Transactions on Intelligent Transportation Systems,2019,20(10):3913-3926. |
12 | 邵春福,薛松,董春娇,等 .考虑时空相关性的网络交通流短期预测[J].北京交通大学学报,2021,45(4):37-43. |
SHAO Chunfu, XUE Song, DONG Chunjiao,et al .Short-term traffic flow prediction considering temporal-spatial correlation road network[J].Journal of Beijing Jiaotong University,2021,45(4):37-43. | |
13 | 袁华,陈泽濠 .基于时间卷积神经网络的短时交通流预测算法[J].华南理工大学学报(自然科学版),2020,48(11):107-113,122. |
YUAN Hua, CHEN Zehao .Short-term traffic flow pre-diction based on temporal convolutional networks[J].Journal of South China University of Technology (Natural Science Edition),2020,48(11):107-113,122. | |
14 | 陈喜群,周凌霄,曹震 .基于图卷积网络的路网短时交通流预测研究[J].交通运输系统工程与信息,2020,20(4):49-55. |
CHEN Xi-qun, ZHOU Ling-xiao, CAO Zhen .Short-term network-wide traffic prediction based on graph convolutional network[J].Journal of Transportation Systems Engineering and Information Technology,2020,20(4):49-55. | |
15 | YU B, YIN H, ZHU Z .Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[C]∥Proceedings of The Twenty-Seventh International Joint Conference on Artificial Intelligence.Stockholm:Elsevier,2018:3634-3640. |
16 | GUO S N, LIN Y F, FENG N,et al .Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]∥Proceedings of the 33rd AAAI Conference on Artificial Intelligence.Honolulu:AAAI,2019:922-929. |
17 | LI Y, YU R, SHAHABI C,et al .Diffusion convolutional recurrent neural network:data-driven traffic forecasting[C]∥Proceedings of the 6th International Conference on Learning Representationse (ICLR).Vancouver:[s.n.],2018:1-14. |
18 | ZHAO L, SONG Y, ZHANG C,et al .T-GCN:a temporal graph convolutional network for traffic prediction[J].IEEE Transactions on Intelligent Transportation Systems,2020,21(9):3848-3858. |
19 | 胡智维,张建同 .基于多交通模式改进的共享单车需求预测算法研究[J].软件工程,2024,27(2):10-15. |
HU Zhiwei, ZHANG Jiantong .Research on demand forecasting algorithm for shared bicycles based on improved multi-mode transportation mode[J].Soft Engineering,2024,27(2):10-15. | |
20 | YE J C, SUN L L, DU B W,et al .Co-prediction of multiple transportation demands based on deep spatio-temporal neural network[C]∥Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.Anchorage:ACM,2019:305-313. |
21 | WANG Q, GUO B, OUYANG Y,et al .Learning shared mobility-aware knowledge for multiple urban travel demands[J].IEEE Internet of Things Journal,2022,9(9):7025-7035. |
22 | ZHANG M, HUANG T, GUO Z,et al .Complex-network-based traffic network analysis and dynamics:a comprehensive review[J].Physica A:Statistical Mechanics and its Applications,2022,607:128063/1-19. |
23 | MIN W, WYNTER L .Real-time road traffic prediction with spatio-temporal correlations[J].Transportation Research Part C:Emerging Technologies,2011,19(4):606-616. |
24 | 傅惠,胡刚,徐建闽,等 .基于神经网络的城市关联交叉口交通流预测控制方法[J].中国公路学报,2008,21(5):91-95. |
FU Hui, HU Gang, XU Jianmin,et al .Traffic Flow Predictive Control Method of Urban Correlation Intersection Based on Neural Network[J].China Journal of Highway and Transport,2008,21(5):91-95. | |
25 | 马超群,张爽,陈权,等 .客流特征视角下的轨道交通网络特征及其脆弱性[J].交通运输工程学报,2020,20(5):208-216. |
MA Chao-qun, ZHANG Shuang, CHEN Quan,et al .Characteristics and vulnerability of rail transit network based on perspective of passenger flow characteristics[J].Journal of Traffic and Transportation Engineering,2020,20(5):208-216. | |
26 | FILIPOVSKA M, MAHMASSANI H S .Spatio-temporal characterization of stochastic dynamic transportation networks[J].IEEE Transactions on Intelligent Transportation Systems,2023,24(9):9929-9939. |
27 | 王金水,欧雪雯,陈俊岩,等 .基于时空超图卷积模型的城市轨道站点客流预测[J].铁道科学与工程学报,2023,20(12):4506-4516. |
WANG Jinshui, Xuewen OU, CHEN Junyan,et al .Passenger flow forecast of urban rail transit stations based on spatio-temporal hypergraph convolution model[J].Journal of Railway Science and Engineering,2023,20(12):4506-4516. | |
28 | WANG J, ZHANG Y, WEI Y,et al .Metro passenger flow prediction via dynamic hypergraph convolution networks[J].IEEE Transactions on Intelligent Transportation Systems,2021,22(12):7891-7903. |
29 | FENG Y F, YOU H X, ZHANG Z Z,et al .Hypergraph neural networks[C]∥Proceedings of the 33rd AAAI Conference on Artificial Intelligence.Palo Alto:AAAI Press,2019:3558-3565. |
30 | YU W, RUAN K, TANG H,et al .Routing hypergraph convolutional recurrent network for network traffic prediction[J].Applied Intelligence,2023,53(12):16126-16137. |
31 | CHEN E, YE Z, WANG C,et al .Subway passenger flow prediction for special events using smart card data[J].IEEE Transactions on Intelligent Transportation Systems,2019,21(3):1109-1120. |
32 | TANG J, LI Z, GAO F,et al .Identifying critical metro stations in multiplex network based on D-S evidence theory[J].Physica A:Statistical Mechanics and Its Applications,2021,574:126018/1-17. |
33 | 潘恒彦,张文会,胡宝雨,等 .城市公交-地铁加权复合网络构建及鲁棒性分析[J].吉林大学学报(工学版),2022,52(11):2582-2591. |
PAN Heng-yan, ZHANG Wen-hui, HU Bao-yu,et al .Construction and robustness analysis of urban weighted subway-bus composite network[J].Journal of Jilin University (Engineering and Technology Edition),2022,52(11):2582-2591. | |
34 | 郑乐,高良鹏,陈学武,等 .地铁-公交加权复合网络关键站点识别及鲁棒性研究[J].交通运输系统工程与信息,2023,23(5):120-129. |
ZHENG Yue, GAO Liang-peng, CHEN Xue-wu,et al .Critical stations identification and robustness analysis of weighted metro-bus composite network[J].Journal of Transportation Systems Engineering and Information Technology,2023,23(5):120-129. | |
35 | 靳海涛,金凤君,陈卓,等 .基于换乘链断裂点时空信息的公交换乘行为识别[J].交通运输工程学报,2018,18(5):176-184. |
JIN Hai-tao, JIN Feng-jun, CHEN Zhuo,et al .Commute activity identification based on spatial and temporal information of transit chaining breaks[J].Journal of Traffic and Transportation Engineering,2018,18(5):176-184. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||