Journal of South China University of Technology(Natural Science Edition) ›› 2023, Vol. 51 ›› Issue (7): 21-33.doi: 10.12141/j.issn.1000-565X.220626
Special Issue: 2023年机械工程
• Mechanical Engineering • Previous Articles Next Articles
CHEN Xindu1 FU Zhisen1,2,3 WU Zhiheng2,3 CHEN Qiyu2,3 GUO Weike2,3
Received:
2022-09-26
Online:
2023-07-25
Published:
2023-02-20
Contact:
陈新度(1967-),男,博士,教授,博士生导师,主要从事智能装备、制造系统建模以及仿真优化等研究。
E-mail:chenxindu@gdut.edu.cn
About author:
陈新度(1967-),男,博士,教授,博士生导师,主要从事智能装备、制造系统建模以及仿真优化等研究。
Supported by:
CLC Number:
CHEN Xindu, FU Zhisen, WU Zhiheng, et al.. Small-Sample Fault Diagnosis Method Based on Multi-Head Convolution and Differential Self-Attention[J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(7): 21-33.
Table 1
Comparison experiment results of multi-head convolution hyperparameter"
编号 | 头数 | 卷积核大小 | 卷积层数 | 步长 | 输出通道 | 训练准确率/% | 测试准确率/% |
---|---|---|---|---|---|---|---|
1 | 2 | 21,15 | 3 | 1,1,1 | 80,70,48 | 96.00 | 94.45 |
2 | 2 | 21,11 | 4 | 2,2,2,2 | 80,70,48,48 | 96.80 | 96.02 |
3 | 2 | 21,7 | 4 | 4,2,2,2 | 80,70,48,48 | 97.10 | 95.73 |
4 | 3 | 21,15,11 | 3 | 1,1,1 | 80,70,32 | 99.14 | 98.85 |
5 | 3 | 21,15,7 | 4 | 2,2,2,2 | 80,70,32,32 | 99.83 | 99.60 |
6 | 3 | 21,15,11 | 4 | 4,2,2,2 | 80,70,32,32 | 99.70 | 99.78 |
7 | 4 | 21,15,11,7 | 3 | 1,1,1 | 80,70,24 | 98.90 | 98.54 |
8 | 4 | 21,15,11,7 | 4 | 2,2,2,2 | 80,70,24,24 | 99.37 | 99.21 |
9 | 4 | 21,15,11,7 | 4 | 4,2,2,2 | 80,70,24,24 | 99.28 | 99.46 |
Table 3
Results of control experiments of main hyperparameters"
实验编号 | 头数 | 块数 | 批量大小 | 样本长度 | 嵌入维度 | 训练准确率/% | 测试准确率/% |
---|---|---|---|---|---|---|---|
1 | 3 | 2 | 150 | 1 024 | 64 | 95.97 | 94.51 |
2 | 3 | 4 | 100 | 2 480 | 96 | 98.86 | 96.72 |
3 | 3 | 3 | 150 | 4 960 | 96 | 97.98 | 96.90 |
4 | 4 | 2 | 150 | 1 024 | 64 | 99.20 | 95.84 |
5 | 4 | 4 | 100 | 2 480 | 96 | 99.43 | 98.40 |
6 | 4 | 3 | 150 | 4 960 | 96 | 100.00 | 99.78 |
7 | 5 | 2 | 150 | 1 024 | 64 | 97.50 | 89.37 |
8 | 5 | 4 | 100 | 2 480 | 96 | 97.99 | 90.61 |
9 | 5 | 3 | 150 | 4 960 | 96 | 98.91 | 92.46 |
Table 7
Test accuracy of each model under different SNRs"
SNR/dB | 准确率/% | |||
---|---|---|---|---|
MDT | ResNet-CNN | DNN | GRU | |
-50 | 55.04 | 48.93 | 39.67 | 41.32 |
-20 | 59.63 | 49.09 | 41.82 | 44.81 |
-10 | 81.49 | 49.49 | 45.77 | 50.74 |
-8 | 87.20 | 49.14 | 48.60 | 52.58 |
-6 | 90.81 | 51.34 | 44.85 | 69.95 |
-4 | 94.95 | 52.73 | 52.97 | 69.09 |
-2 | 94.09 | 59.81 | 55.74 | 74.26 |
0 | 97.82 | 65.85 | 59.70 | 81.04 |
2 | 98.45 | 69.13 | 60.78 | 84.25 |
8 | 99.00 | 83.60 | 81.63 | 86.35 |
6 | 99.19 | 77.41 | 73.83 | 85.36 |
10 | 99.54 | 86.24 | 82.16 | 87.07 |
1 | 赵玉成,陈荣华,马占国 .旋转机械动力辨识与故障诊断技术[M].徐州:中国矿业大学出版社,2008. |
2 | SHAO H, JIANG H, ZHANG X,et al .Rolling bearing fault diagnosis using an optimization deep belief network[J].Measurement Science and Technology,2015,26(11):115002. |
3 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M,et al .Generative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. |
4 | RADFORD A, METZ L, CHINTALA S .Unsupervised representation learning with deep convolutional generative adversarial networks[DB/OL].(2016-01-17)[2022-08-04].. |
5 | GULRAJANI I, AHMED F, ARJOVSKY M,et al .Improved training of Wasserstein GANs[C]∥NIPS’17:Proceedings of the 31st International Conference on Neural Information Processing Systems,2017.[S. l.]:[s. n.],2017:5767-5777. |
6 | SHEN S, JIN G, GAO K,et al .AE-GAN:adversarial eliminating with GAN[DB/OL].(2017-09-26)[2022-08-04].. |
7 | MIRZA M, OSINDERO S .Conditional generative adversarial nets[DB/OL].(2014-11-06)[2022-08-04].. |
8 | SAUFI S R, AHMAD Z A B, LEONG M S,et al .Gearbox fault diagnosis using a deep learning model with limited data sample[J].IEEE Transactions on Industrial Informatics,2020,16(10):6263-6271. |
9 | LI X, ZHANG W, DING Q .Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism[J].Signal Processing,2019,161:136-154. |
10 | ZHANG X, HE C, LU Y,et al .Fault diagnosis for small samples based on attention mechanism[J].Measurement,2022,187:110242. |
11 | XIE Z, CHEN J, FENG Y,et al .End to end multi-task learning with attention for multi-objective fault diagnosis under small sample[J].Journal of Manufacturing Systems,2022,62:301-316. |
12 | VASWANI A, SHAZEER N, PARMAR N,et al .Attention is all you need[C]∥ Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017).Long Beach:[s. n.],2017. |
13 | SHAZEER N, MIRHOSEINI A, MAZIARZ K,et al .Outrageously large neural networks:the sparsely-gated mixture-of-experts layer[DB/OL].(2017-03-04)[2022-08-04].. |
14 | DING Y, JIA M, MIAO Q,et al .A novel time-frequency Transformer based on self-attention mechanism and its application in fault diagnosis of rolling bearings[J].Mechanical Systems and Signal Processing,2022,168:108616. |
15 | 郑英,金淼,张洪,等 .一种基于一维多路卷积神经网络的故障分类方法:CN110033021A[P].2019-07-19. |
16 | DAUBECHIES I, LU J, WU H T .Synchrosqueezed wavelet transforms:an empirical mode decomposition-like tool[J].Applied and Computational Harmonic Analysis,2011,30(2):243-261. |
17 | HUANG N E, SHEN Z, LONG S R,et al .The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London. Series A:Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995. |
[1] | ZHAO Rongchao, WU Baili, CHEN Zhuyun, WEN Kairu, ZHANG Shaohui, LI Weihua. Graph Neural Network for Fault Diagnosis with Multi-Scale Time-Spatial Information Fusion Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(12): 42-52. |
[2] | CHEN Zhong, TANG Xin, ZHANG Daming, HE Dongshan, ZHANG Xianmin. Stockwell Transform Combined with Subdomain Adaptation for Escalator Motor Bearing Transfer Diagnosis [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(12): 34-41. |
[3] | LIU Yiqi, HUANG Zhipeng, YU Guangping, et al. Full Life-cycle Intelligent Detection, Diagnosis and Analysis for Sludge Bulking [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 91-99,110. |
[4] | TANG Hongbin, FU Zheng, DENG Xishu, et al. Fault Diagnosis Method of Piston Pump in Construction Machinery under Variable Load Condition [J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(2): 110-119. |
[5] | GUO Mingjun, LI Weiguang, YANG Qijiang, et al. Amplitude Filter Characteristics of PCA and Its Application in Feature Extraction of Rotor [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(5): 125-133. |
[6] | GUO Mingjun, LI Weiguang, YANG Qijiang, et al. Sparse Algorithm-Based Purification of Multi-Condition Axis Trajectory of Large Rotor [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(4): 45-53. |
[7] | ZHOU Xuan, WANG Xiaopei, LIANG Liequan, et al. Random Forests Algorithm-Based Fault Diagnosis for Refrigerant Charge [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(2): 16-24. |
[8] | XU Yuge LAI Chunling LUO Fei . Bagging Ensemble Fault Diagnosis Modeling with Imbalanced classification in Wastewater Treatment Plant [J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(8): 107-115. |
[9] | ZHAO De-zun LI jian-yong CHENG Wei-dong. Fault Diagnosis of Rolling Bearing Under Gear Noise Interference and Variable Rotating Speed [J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(2): 67-73. |
[10] | XIAO Hong-jun LIU Yi-qi HUANG Dao-ping. Application of Gaussian Process Modeling Method in Industrial Processes [J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(12): 36-43,52. |
[11] | He Guo- lin Ding Kang Li Lin- sheng Deng Ren- gang. Vibration Test and Analysis of Transmission Chain of Wind Turbine Based on Double- Elastic Support [J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(3): 90-97. |
[12] | Xie Xiao-peng Xiao Hai-bing Feng Wei Huang Bo Ge Shuang. Fault Pattern Recognition of Energy Loss Based on Locally Linear Embedding [J]. Journal of South China University of Technology(Natural Science Edition), 2012, 40(12): 1-6. |
[13] | Wang Xiao-feng Shen Gui-xiang Zhang Ying-zhi Chen Bing-kun Zheng Shan Liu Wei. Comparison of Parameter Estimation Methods for Reliability Model [J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(6): 47-52. |
[14] | Yang Tong-guang Jiang Xing-hua Fu Qiang. Fault Diagnosis for Broken Bar of Speed Sensorless Induction Motor [J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(10): 152-156. |
[15] | Wen Fu-shuan Guo Wen-xin Liao Zhi-wei Wei Liu-hong Xin Jian-bo . An Optimization Algorithm for Fault Diagnosis of High-Voltage Transmission Lines Based on Waveform Matching [J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(7): 56-61,83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||