华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (9): 31-47.doi: 10.12141/j.issn.1000-565X.250003
王庆荣1, 高桓伊1, 朱昌锋2, 何润田2, 慕壮壮1
收稿日期:2025-01-04
出版日期:2025-09-25
发布日期:2025-03-21
通信作者:
高桓伊(2001—),男,硕士生,主要从事深度学习、交通拥堵预测研究。
E-mail:gaohuanyi1@163.com
作者简介:王庆荣(1977—),女,教授,主要从事智能交通、应急物流研究。E-mail: 329046272@qq.com
基金资助:WANG Qingrong1, GAO Huanyi1, ZHU Changfeng2, HE Runtian2, MU Zhuangzhuang1
Received:2025-01-04
Online:2025-09-25
Published:2025-03-21
Contact:
高桓伊(2001—),男,硕士生,主要从事深度学习、交通拥堵预测研究。
E-mail:gaohuanyi1@163.com
About author:王庆荣(1977—),女,教授,主要从事智能交通、应急物流研究。E-mail: 329046272@qq.com
Supported by:摘要:
随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,这种现象对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面仍存在一定局限性。针对这一问题,该文提出了一种基于图神经网络的门控时空卷积网络模型,以更有效地刻画和预测交通拥堵状况。首先,通过改进的K-均值聚类算法将原始数据划分为多个拥堵状态类别,并将其作为辅助特征融入预测模型,以增强特征表达能力;然后,引入门控时间卷积网络以捕捉交通数据间的时序特性与动态依赖关系,并构建动态自适应门控图卷积网络,通过信号生成模块与双层调制机制实现特征融合与动态权重分配,从而完成对时空特征的有效提取;最后,引入残差连接以增强训练过程的稳定性,并利用跳跃连接对多层次与多尺度特征进行有效整合。在真实交通数据集PeMS08与PeMS04上对所提模型的有效性进行了验证,结果表明,该模型的预测精度优于其他基线模型。
中图分类号:
王庆荣, 高桓伊, 朱昌锋, 何润田, 慕壮壮. 基于动态自适应门控图卷积网络的交通拥堵预测[J]. 华南理工大学学报(自然科学版), 2025, 53(9): 31-47.
WANG Qingrong, GAO Huanyi, ZHU Changfeng, HE Runtian, MU Zhuangzhuang. Traffic Congestion Prediction Based on Dynamic Adaptive Gated Graph Convolutional Networks[J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(9): 31-47.
表1
不同预测时长下各模型在数据集PeMS08上的实验结果对比"
| 时长/min | 模型 | RMSE/10-2 | MAPE/% | MAE/10-2 | R2 |
|---|---|---|---|---|---|
| 15 | HA | 10.490 | 4.932 | 5.981 | 0.321 |
| SVR | 8.593 | 4.780 | 5.399 | 0.698 | |
| DCRNN | 6.303 | 2.810 | 3.198 | 0.730 | |
| STGCN | 6.190 | 2.802 | 3.014 | 0.758 | |
| Graph WaveNet | 5.838 | 2.229 | 2.723 | 0.774 | |
| STTF | 4.452 | 1.421 | 1.893 | 0.895 | |
| VMD-AGCGRN | 4.053 | 1.140 | 1.372 | 0.907 | |
| GSTCN | 3.739 | 0.933 | 1.195 | 0.914 | |
| 30 | HA | 10.586 | 4.930 | 5.993 | 0.320 |
| SVR | 9.601 | 4.843 | 5.547 | 0.638 | |
| DCRNN | 6.946 | 3.343 | 3.611 | 0.683 | |
| STGCN | 6.874 | 3.228 | 3.448 | 0.692 | |
| Graph WaveNet | 6.641 | 2.572 | 3.152 | 0.725 | |
| STTF | 4.916 | 1.782 | 2.127 | 0.852 | |
| VMD-AGCGRN | 4.751 | 1.452 | 1.918 | 0.866 | |
| GSTCN | 4.476 | 1.175 | 1.501 | 0.874 | |
| 60 | HA | 10.675 | 4.926 | 6.011 | 0.317 |
| SVR | 10.335 | 5.761 | 6.288 | 0.561 | |
| DCRNN | 7.849 | 3.414 | 3.804 | 0.659 | |
| STGCN | 8.021 | 3.542 | 3.967 | 0.647 | |
| Graph WaveNet | 7.494 | 3.034 | 3.709 | 0.678 | |
| STTF | 5.544 | 2.234 | 2.489 | 0.803 | |
| VMD-AGCGRN | 5.387 | 1.975 | 2.247 | 0.814 | |
| GSTCN | 5.286 | 1.579 | 1.994 | 0.825 |
表2
不同预测时长下各模型在数据集PeMS04上的实验结果对比"
| 时长/min | 模型 | RMSE/10-2 | MAPE/% | MAE/10-2 | R2 |
|---|---|---|---|---|---|
| 15 | HA | 11.762 | 5.701 | 6.934 | 0.231 |
| SVR | 9.573 | 4.780 | 5.399 | 0.573 | |
| DCRNN | 7.872 | 3.256 | 3.821 | 0.705 | |
| STGCN | 7.983 | 3.438 | 3.998 | 0.691 | |
| Graph WaveNet | 7.618 | 3.048 | 3.787 | 0.718 | |
| STTF | 5.069 | 1.618 | 2.147 | 0.853 | |
| VMD-AGCGRN | 4.677 | 1.426 | 1.635 | 0.872 | |
| GSTCN | 4.472 | 1.115 | 1.448 | 0.891 | |
| 30 | HA | 11.767 | 5.702 | 6.936 | 0.231 |
| SVR | 10.496 | 4.314 | 4.966 | 0.558 | |
| DCRNN | 8.668 | 3.774 | 4.372 | 0.616 | |
| STGCN | 8.731 | 3.996 | 4.416 | 0.602 | |
| Graph WaveNet | 8.201 | 3.378 | 4.194 | 0.638 | |
| STTF | 5.793 | 1.849 | 2.454 | 0.819 | |
| VMD-AGCGRN | 5.583 | 1.650 | 2.091 | 0.824 | |
| GSTCN | 5.224 | 1.424 | 1.839 | 0.849 | |
| 60 | HA | 11.774 | 5.704 | 6.939 | 0.232 |
| SVR | 11.340 | 4.964 | 5.726 | 0.486 | |
| DCRNN | 9.188 | 4.019 | 4.458 | 0.588 | |
| STGCN | 9.364 | 4.187 | 4.683 | 0.579 | |
| Graph WaveNet | 8.640 | 3.734 | 4.612 | 0.605 | |
| STTF | 6.533 | 2.079 | 2.735 | 0.770 | |
| VMD-AGCGRN | 6.364 | 1.991 | 2.572 | 0.787 | |
| GSTCN | 6.054 | 1.818 | 2.330 | 0.802 |
| [1] | LI L, DAI F, HUANG B,et al .ST3DRNet:attention-based spatio-temporal 3D residual neural networks for traffic congestion prediction[J].Sensors,2024,24(4):1261/1-19. |
| [2] | SHAHRIARI S, GHASRI M, SISSON S A,et al .Ensemble of ARIMA:combining parametric and bootstrapping technique for traffic flow prediction[J].Transportmetrica A:Transport Science,2020,16(3):1552-1573. |
| [3] | PRIAMBODO B, AHMAD A, KADIR R A .Predicting traffic flow propagation based on congestion at neighbouring roads using hidden Markov model[J].IEEE Access,2021,9: 85933-85946. |
| [4] | ZHANG Z, HAN Y, PENG T,et al .A comprehensive spatio-temporal model for subway passenger flow prediction[J].ISPRS International Journal of Geo-Information,2022,11(6):341-341. |
| [5] | ZHANG H, JIANG C, YANG L .Forecasting traffic congestion status in terminal areas based on support vector machine[J].Advances in Mechanical Engineering,2016,8(9):1-11. |
| [6] | YU H, JI N, REN Y,et al .A special event-based K-nearest neighbor model for short-term traffic state prediction[J].IEEE Access,2019,7:81717-81729. |
| [7] | 姚俊峰,何瑞,史童童,等 .基于机器学习的交通流预测方法综述[J].交通运输工程学报,2023,23(3):44-67. |
| YAO Jun-feng, HE Rui, SHI Tong-tong,et al .Review on machine learning-based traffic flow prediction methods[J].Journal of Traffic and Transportation Engineering,2023,23(3):44-67. | |
| [8] | 梁秀霞,夏曼曼,何月阳,等 .基于时空多头图注意力网络的交通流预测[J].电子学报,2024,52(2):500-509. |
| LIANG Xiu-xia, XIA Man-man, HE Yue-yang,et al .Traffic flow prediction based on spatio-temporal multi-head graph attention network[J].Acta Electronica Sinica,2024,52(2):500-509. | |
| [9] | YU B, YIN H, ZHU Z .Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting [C]∥ Proceedings of the 27th International Joint Conference on Artificial Intelligence.Stockholm:International Joint Conferences on Artificial Intelligence Organization,2018:3634-3640. |
| [10] | LI Y, YU R, SHAHABI C,et al .Diffusion convolutional recurrent neural network:data-driven traffic forecasting[C]∥ Proceedings of the 6th International Conference on Learning Representations.Vancouver:OpenReview.net,2018:1-10. |
| [11] | WU Z, PAN S, LONG G,et al .Graph WaveNet for deep spatial temporal graph modeling[C]∥ Proceedings of the 28th International Joint Conference on Artificial Intelligence.Macao:ACM,2019:1907-1913. |
| [12] | 贺文武,裴博彧,李雅婷,等 .基于双向自适应门控图卷积网络的交通流预测[J].交通运输系统工程与信息,2023,23(1):187-197. |
| HE Wen-wu, PEI Bo-yu, LI Ya-ting,et al .Traffic flow forecasting based on bi-directional adaptive gating graph convolutional networks[J].Journal of Transportation Systems Engineering and Information Technology,2023,23(1):187-197. | |
| [13] | 崔建勋,要甲,赵泊媛 .基于深度学习的短期交通流预测方法综述[J].交通运输工程学报,2024,24(2):50-64. |
| CUI Jian-xun, YAO Jia, ZHAO Bo-yuan .Review on short-term traffic flow prediction methods based on deep learning[J].Journal of Traffic and Transportation Engineering,2024,24(2):50-64. | |
| [14] | WANG X, ZENG R, ZOU F,et al .STTF:an efficient transformer model for traffic congestion prediction[J].International Journal of Computational Intelligence Systems,2023,16(1):1-16. |
| [15] | 张玺君,余光杰,崔勇,等 .基于聚类算法和图神经网络的短时交通流预测[J].吉林大学学报(工学版),2024,54(6):1593-1600. |
| ZHANG Xi-jun, YU Guang-jie, CUI Yong,et al .Short-term traffic flow prediction based on clustering algorithm and graph neural network[J].Journal of Jilin University(Engineering and Technology Edition),2024,54(6):1593-1600. | |
| [16] | BAI S, KOLTER J Z, KOLTUN V .An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL].(2018-03-04)[2024-11-06].. |
| [17] | HU Z, SHAO F, SUN R .A new perspective on traffic flow prediction:a graph spatial-temporal network with complex network information[J].Electronics,2022,11:2432/1-22. |
| [18] | GUO X, KONG X, XING W,et al .Adaptive graph generation based on generalized pagerank graph neural network for traffic flow forecasting[J].Applied Intelligence,2023,53(24):30971- 30986. |
| [19] | Caltrans.Caltrans performance measurement system [EB/OL].(2024-02-25)[2025-03-17].. |
| [20] | WANG Q, CHEN X, ZHU C,et al .Short-term traffic flow prediction based on the SGA-KGCN-LSTM model[J].Engineering Letters,2023,31(3):1221-1235. |
| [21] | SMITH B L, WILLIAMS B M, OSWALD R K .Comparison of parametric and nonparametric models for traffic flow forecasting[J].Transportation Research Part C:Emerging Technologies,2002,10(4):303-321. |
| [22] | LIN G, LIN A, GU D .Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient[J].Information Sciences,2022, 608:517-531. |
| [23] | 龚循强,邱万锦,吕开云,等 .变分模态分解与自适应图卷积门控循环网络的交通流量组合预测模型[J].武汉大学学报(信息科学版),2024,49(12):2329-2341. |
| GONG Xunqiang, QIU Wanjin, Kaiyun LÜ,et al .A combined traffic flow prediction model based on variational mode decomposition and adaptive graph convolutional gated recurrent network[J].Geomatics and Information Science of Wuhan University,2024,49(12):2329-2341. | |
| [24] | 王庆荣,慕壮壮,朱昌锋,等 .基于HDNNF-CAF的短时交通流预测研究[J].计算机工程与应用,2025,61(15): 318-328. |
| WANG Qingrong, MU Zhuangzhuang, ZHU Changfeng,et al .Research on short-term traffic flow prediction based on HDNNF-CAF[J].Computer Engineering and Applications,2025,61(15):318-328. | |
| [25] | MIRJALILI S, MIRJALILI S M, LEWIS A .Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61. |
| [26] | 薛建凯 .一种新型的群智能优化技术的研究与应用[D].上海:东华大学,2020. |
| [27] | ARTHUR D, VASSILVITSKII S .K-means++:the advantages of careful seeding[C]∥ Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms.New Orleans:ACM,2007:1027-1035. |
| [28] | DAVIES D L, BOULDIN D W .A cluster separation measure[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,1(2):224-227. |
| [29] | CALINSKI T, HARABASZ J .A dendrite method for cluster analysis[J].Communications in Statistics:Theory and Methods,1974,3(1):1-27. |
| [1] | 谢坤, 邢馨元, 董宏辉, 董春娇, 陈元朵. 轨迹数据驱动的职住地识别及出行活动特征分类方法[J]. 华南理工大学学报(自然科学版), 2025, 53(6): 131-139. |
| [2] | 曹瑞芬, 胡维玲, 李强生, 宾艳南, 郑春厚. 基于图神经网络的IL-6诱导肽预测方法[J]. 华南理工大学学报(自然科学版), 2025, 53(5): 109-117. |
| [3] | 胡广华, 代志刚, 王清辉. 基于图神经网络的B-Rep模型加工特征识别方法[J]. 华南理工大学学报(自然科学版), 2025, 53(5): 20-31. |
| [4] | 蔡晓东, 周青松, 叶青. 基于动态邻域采样的社交推荐模型[J]. 华南理工大学学报(自然科学版), 2024, 52(2): 32-41. |
| [5] | 林培群, 龚敏平, 周楚昊. 面向运输风险识别的高速公路货车用户画像方法[J]. 华南理工大学学报(自然科学版), 2023, 51(6): 1-9. |
| [6] | 赵荣超, 吴百礼, 陈祝云, 等. 多尺度时空信息融合驱动的图神经网络故障诊断方法[J]. 华南理工大学学报(自然科学版), 2023, 51(12): 42-52. |
| [7] | 许伦辉, 余佳芯, 裴明阳, 等. 基于几何路网结构和强化学习的车辆重定位策略[J]. 华南理工大学学报(自然科学版), 2023, 51(10): 99-109. |
| [8] | 陆以勤, 潘周双, 张洋, 等. 基于交互式连接图注意力网络的知识图谱补全方法[J]. 华南理工大学学报(自然科学版), 2022, 50(12): 13-19. |
| [9] | 蔡晓东, 曾志杨. AFGSRec:一种自适应融合全局协同特征的社交推荐模型[J]. 华南理工大学学报(自然科学版), 2022, 50(12): 71-79. |
| [10] | 刘小兰, 石宗宇, 叶泽慧, 等. 基于锚点图的低秩缺失多视图子空间聚类[J]. 华南理工大学学报(自然科学版), 2022, 50(12): 60-70. |
| [11] | 郑思凡, 王卫星, 何占华, 等. 双粒度光流流形学习的刮刷总成摆杆摆幅检测[J]. 华南理工大学学报(自然科学版), 2020, 48(1): 123-132. |
| [12] | 陈维亚 潘鑫 方晓平. 基于 K-means 聚类组合模型的公交线路客流短时预测[J]. 华南理工大学学报(自然科学版), 2019, 47(4): 83-89,113. |
| [13] | 李伟 呼延菊 沙爱民 孙朝云 郝雪丽. 基于 3D 数据和双尺度聚类算法的路面裂缝检测[J]. 华南理工大学学报(自然科学版), 2015, 43(8): 99-105. |
| [14] | 汪丽娜 陈晓宏. 基于AFS优化初始聚类中心的G-K聚类模型[J]. 华南理工大学学报(自然科学版), 2014, 42(9): 65-69. |
| [15] | 王勇 毛海军 刘永 何杰. 基于客户点多重特性的车辆路线优化[J]. 华南理工大学学报(自然科学版), 2014, 42(2): 116-124. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
地址:广州 五山 华南理工大学17号楼 邮政编码:510640
电话: 020-87111794 邮箱:journal@scut.edu.cn

