华南理工大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (1): 123-132.doi: 10.12141/j.issn.1000-565X.190175

• 电子、通信与自动控制 • 上一篇    下一篇

双粒度光流流形学习的刮刷总成摆杆摆幅检测

郑思凡1,2 王卫星1,3 何占华4 梁子裕5 陈平平1
  

  1. 1. 福州大学 物理与信息工程学院,福建 福州 350116; 2. 黎明职业大学 智能制造工程学院,福建 泉州 362000;3. 长安大学 信息工程学院,陕西 西安 710064; 4. 福建慧舟信息科技有限公司,福建 福州 350003;5. 黎明职业大学 科技处,福建 泉州 362000
  • 收稿日期:2019-04-11 修回日期:2019-06-18 出版日期:2020-01-25 发布日期:2019-12-01
  • 通信作者: 郑思凡(1975-),男,博士生,实验师,主要从事机器视觉、模式识别、经编机贾卡写花图形软件设计等研究。 E-mail:zhengsf@lmu.edu.cn
  • 作者简介:郑思凡(1975-),男,博士生,实验师,主要从事机器视觉、模式识别、经编机贾卡写花图形软件设计等研究。
  • 基金资助:
    国家自然科学基金资助项目 (61972060,61871132); 福建省政府招标采购交通执法信息系统运维服务项目(3500FRGK2017008-1); 智能制造福建省高职院校应用技术协同创新中心项目 (2016CKMJ0071)

Research on Swing Amplitude Detection of Automobile Wiper with Two Granularity Optical Flow Manifold Learning#br#

ZHENG Sifan1,2 WANG Weixing1,3 HE Zhanhua4 LIANG Ziyu5 CHEN Pingping1   

  1. 1. College of Physics and Information Engineering,Fuzhou University,Fuzhou 350116,Fujian,China;2. Intelligent Manufacturing Engineering Institute,Liming Vocational University,Quanzhou 362000,Fujian,China;3. School of Information Engineering,Chang'an University,Xi'an 710064,Shaanxi,China;4. Fujian Huizhou Information Technology Co. ,Ltd. ,Fuzhou 350003,Fujian,China;5. Technology Department,Liming Vocational University,Quanzhou 362000,Fujian,China
  • Received:2019-04-11 Revised:2019-06-18 Online:2020-01-25 Published:2019-12-01
  • Contact: 郑思凡(1975-),男,博士生,实验师,主要从事机器视觉、模式识别、经编机贾卡写花图形软件设计等研究。 E-mail:zhengsf@lmu.edu.cn
  • About author:郑思凡(1975-),男,博士生,实验师,主要从事机器视觉、模式识别、经编机贾卡写花图形软件设计等研究。
  • Supported by:
    Supported by the National Natural Science Foundation of China (61972060,61871132)

摘要: 在基于机器视觉检测的客运车辆日趟故障安全例检自动化设计中,针对子空间聚类算法对汽车刮刷总成摆杆摆幅检测中因玻璃复杂背景导致光流轨迹过于稀疏的缺陷,提出了一种双粒度光流流形学习的汽车刮水器总成主副摆杆运动分割算法。首先将摆杆满幅等长 LDOF 变分光流轨迹作为粗粒度光流进行稀疏子空间聚类,获得可靠的种子样本; 然后通过构建稠密细粒度光流与粗粒度光流的轨迹时空相似度流形拓扑图,并在图上利用调和函数将种子轨迹样本邻接节点标签凸松弛为高斯随机场进行半监督标签扩散,从而获得稠密的雨刮运动区域,以便进一步做 RANSAC 直线拟合和摆角计算;最后,将该算法模块经过 ocx 插件封装后以回调函数体的形式嵌入客运站的车辆跟踪模块进行同步,并在客运站现场采集了 6 种不同照度下 4 种车型共 153 车次的进站安检视频,用于分析比较同步后的两种粒度流形学习算法对摆杆的运动分割后直线拟合误差与摆角误差。实验结果表明: 本算法对运动摆杆的拟合与其摆角计算的精确率均可以达到85%以上,具有进一步推广应用前景。

关键词: 机器视觉检测, 子空间聚类算法, 双粒度光流流形学习, 变分光流, 时空相似度流形拓扑图, 高斯随机场, 调和函数

Abstract: In the vehicle security inspection system design based on machine vision,a subspace clustering algo-rithm via two granularity optical flow manifold learning was proposed to detect automobile wiper swing angle ampli-tude in order to avoid the defect that the optical flow trajectory is too sparse caused by the complex background of glass. Firstly,the full-length wiper LDOF variational optical flow trajectory was used as coarse-granularity optical flow to perform sparse subspace clustering to obtain reliable seed sample. Then the temporal-spatial similarity to-pography graph of dense and fine granularity optical flow and coarse-granularity optical flow was constructed,and the harmonic function was used to relax the neighbor trajectory label of the seed's to the Gaussian random field for semi-supervised label diffusion to obtain a dense wiper motion region for further RANSAC line fitting and swing an-gle calculation. Finaly,the algorithm module was encapsulated by ocx plugin and embeded into the vehicle track-ing module in the form of callback function for synchronization. Security check video of 153 trains of 4 types of ve-
hicles under 6 different illuminances was collected. The videos was used to analyze and compare the accuracy of fitting and swing angle of two granularity optical flow manifold learning algorithms. The experiment results show that the accuracy of fitting and swing angle of the new algorithm can reach more than 85%,showing a broad appli-cation and promotion prospect.

Key words: machine vision detection, subspace clustering algorithm, dual granularity optical flow manifold learn-ing, variational optical flow, space-time similarity manifold topology, Gaussian random field, harmonic function

中图分类号: