华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (9): 31-47.doi: 10.12141/j.issn.1000-565X.250003

• 计算机科学与技术 • 上一篇    下一篇

基于动态自适应门控图卷积网络的交通拥堵预测研究

王庆荣1   高桓伊1   朱昌锋2   何润田2   慕壮壮1   

  1. 1. 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070;

    2. 兰州交通大学 交通运输学院,甘肃 兰州 730070

  • 出版日期:2025-09-25 发布日期:2025-03-21

Traffic Congestion Prediction Based on Dynamic Adaptive Gated Graph Convolutional Networks

WANG Qingrong1  GAO Huanyi1  ZHU Changfeng2  He Runtian2   

  1. 1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;

    2. School of Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

  • Online:2025-09-25 Published:2025-03-21

摘要:

随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,并对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面仍存在一定局限性。针对这一挑战,提出一种基于图神经网络的门控时空卷积网络模型以更有效地刻画和预测交通拥堵状况。首先,通过改进的K-Means聚类算法将原始数据划分为多个拥堵状态类别,并将其作为辅助特征融入预测模型,以增强特征表达能力;其次,引入门控时间卷积网络以捕捉交通数据间的时序特性与动态依赖关系,并构建动态自适应门控图卷积网络,通过信号生成模块与双层调制机制实现特征融合与动态权重分配,从而完成对时空特征的有效提取;最后,引入残差连接以增强训练过程的稳定性,并利用跳跃连接对多层次与多尺度特征进行有效整合。在真实交通数据集PeMS08与PeMS04上对所提出模型的有效性进行了验证,实验结果表明本文模型在预测精度方面优于其他基线模型。

关键词: 交通拥堵预测, 图神经网络, 动态自适应门控, 聚类算法, 门控时间卷积网络

Abstract:

With the continual rise in the number of motor vehicles in urban areas, traffic congestion has worsened, adversely affecting environmental protection and urban operational efficiency. Consequently, accurately predicting traffic congestion is of critical importance for traffic management and optimization. However, existing research still faces limitations in modeling the dynamic, time-varying characteristics of traffic flow as well as the complex interactions among road segments. To address these challenges, a Gated Spatiotemporal Convolutional Network model based on Graph Neural Networks is proposed to more effectively capture and predict traffic congestion. First, an improved K-Means clustering algorithm is employed to divide the raw data into multiple congestion-state categories, which are then incorporated as auxiliary features to enhance feature representation. Next, a Gated Temporal Convolutional Network is introduced to capture the temporal properties and dynamic dependencies in traffic data, and a Dynamic Adaptive Gated Graph Convolutional Network is constructed to achieve feature fusion and dynamic weight allocation through a signal generation module and a dual-modulation mechanism, thereby facilitating effective extraction of spatiotemporal features. Finally, residual connections are incorporated to improve training stability, and skip connections are utilized to integrate multi-level and multi-scale features. Experimental results on real-world PeMS08 and PeMS04 datasets demonstrate that the proposed model achieves superior prediction accuracy compared with other baseline methods.

Key words: traffic congestion prediction, graph neural networks, dynamic adaptive gating, clustering algorithm, gated temporal convolutional network