华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (5): 109-117.doi: 10.12141/j.issn.1000-565X.240242

• 计算机科学与技术 • 上一篇    

基于图神经网络的IL-6诱导肽预测研究

曹瑞芬1 胡维玲1 李强生1 宾艳南2 郑春厚3   

  1. 1.安徽大学 计算机科学与技术学院,安徽 合肥 230601;

    2. 安徽大学 物质科学与信息技术研究院,安徽 合肥 230601;

    3. 安徽大学 人工智能学院,安徽 合肥 230601

  • 出版日期:2025-05-25 发布日期:2024-11-08

Prediction of IL-6 Inducing Peptides Based on Graph Neural Networks

CAO Ruifen1 HU Weiling1 LI Qiangsheng1 BIN Yannan2 ZHENG Chunhou3   

  1. 1. School of Computer Science and Technology, Anhui University, Hefei 230601, Anhui, China;

    2. Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China;

    3. School of Artificial Intelligence, Anhui University, Hefei 230601, Anhui, China

  • Online:2025-05-25 Published:2024-11-08

摘要:

白细胞介素6(Interleukin-6,简称IL-6)是一种高多效性的糖蛋白因子,可以调节先天性免疫和适应性免疫以及代谢的各个方面,包括糖酵解、脂肪酸氧化和氧化磷酸化等。许多研究已证明,病毒感染的患者体内的IL-6表达和释放显著增加,并且与疾病的严重程度呈正相关。因此,识别IL-6诱导肽并探究其作用机制,对于开发免疫治疗以及疾病严重程度生物标志物具有重要的意义。目前对于IL-6诱导肽的识别大多使用传统机器学习,特征选择与提取较为复杂,且需要依赖领域专家知识。因此,本文提出一种基于图神经网络的IL-6诱导肽预测方法SFGNN-IL6。根据预测的IL-6诱导肽结构特征,通过阈值筛选距离信息构建邻接矩阵,结合氨基酸的编码方式即One-hot编码、位置编码和BLOSUM62编码提取氨基酸节点特征并进行图表示。然后,采用图注意力机制层和图卷积神经网络层,双通道分别提取多视角特征,既关注节点权重的更新,也考虑节点信息的更新。最后将两类特征进行融合用于IL-6诱导肽的分类。通过系列实验,验证了模型的有效性。

关键词: IL-6诱导肽, 图神经网络, 结构特征, 图注意力机制, 图卷积神经网络

Abstract:

Interleukin-6 (IL-6) is a highly multifunctional glycoprotein factor that can regulate both innate and adaptive immunity and various aspects of metabolism, including glycolysis, fatty acid oxidation, and oxidative phosphorylation. Many studies have shown that the expression and release of IL-6 in patients infected with viruses significantly increase, and are positively correlated with the severity of the disease. Therefore, identifying IL-6 inducing peptides and exploring their mechanisms of action is very important for developing immune therapies and diagnostic biomarker for the severity of the disease. Currently, the identification of IL-6 inducing peptides methods mostly use traditional machine learning, that require expert knowledge of the field. Therefore, this study proposes a novel IL-6 inducing peptide prediction method (SFGNN-IL6) based on graph neural networks. The predicted structural information of IL-6 inducing peptides are used to construct relation between the nodes of amino acids. The node features are extracted using one-hot encoding, position encoding, and BLOSUM62 encoding, and graph-represented using the encoded features. Then, graph attention mechanism layers and graph convolutional neural network layers are used as dual channels to separately extract features, considering both the update of node weights and the update of node information. Finally, the two types of features are fused for classification of IL-6 inducing peptides. The experimental results validate the effectiveness of the model proposed in this study.

Key words: IL-6 inducing peptides, Graph neural network, Structural information, Graph attention mechanism, Graph convolutional neural network