| [1] |
HE Y, WANG H, ZHANG B .Color-based road detection in urban traffic scenes [J].IEEE Transactions on Intelligent Transportation Systems,2004,5(4):309-318.
|
| [2] |
YOO H, YANG U, SOHN K .Gradient-enhancing conversion for illumination-robust lane detection[J].IEEE Transactions on Intelligent Transportation Systems,2013,14(3):1083-1094.
|
| [3] |
GAIKWAD V, LOKHANDE S .Lane departure identification for advanced driver assistance [J].IEEE Tran-sactions on Intelligent Transportation Systems,2014,16(2):910-918.
|
| [4] |
NIU J, LU J, XU M,et al .Robust lane detection using two-stage feature extraction with curve fitting [J].Pattern Recognition,2016,59:225-233.
|
| [5] |
PAN X, SHI J, LUO P,et al .Spatial as deep:spatial CNN for traffic scene understanding[C]∥ Procee-dings of theThirty-Second AAAI Conference on Artificial Intelligence.New Orleans:AAAI,2018:7276-7283.
|
| [6] |
HOU Y, MA Z, LIU C,et al .Learning lightweight lane detection CNNs by self attention distillation[C]∥ Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:1013-1021.
|
| [7] |
ZHAO J, QIU Z, HU H,et al .HWLane:HW-Transformer for lane detection[J].IEEE Transactions on Intelligent Transportation Systems,2024,25(8):9321-9331.
|
| [8] |
NEVEN D, DE BRABANDERE B, GEORGOULIS S,et al .Towards end-to-end lane detection:an instance segmentation approach[C]∥ Proceedings of 2018 IEEE Intelligent Vehicles Symposium.Changshu:IEEE,2018:286-291.
|
| [9] |
WEN Y, YIN Y, RAN H .FlipNet:an attention-enhanced hierarchical feature flip fusion network for lane detection[J].IEEE Transactions on Intelligent Transportation Systems,2024,25(8):8741-8750.
|
| [10] |
TABELINI L, BERRIEL R, PAIXAO T M,et al .PolyLaneNet:lane estimation via deep polynomial regression[C]∥ Proceedings of 2020 the 25th Inter-national Conference on Pattern Recognition.Milan:IEEE,2021: 6150-6156.
|
| [11] |
LIU R, YUAN Z, LIU T,et al .End-to-end lane shape prediction with transformers[C]∥ Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision.Waikoloa:IEEE,2021:3693-3701.
|
| [12] |
FENG Z, GUO S, TAN X,et al .Rethinking efficient lane detection via curve modeling[C]∥ Procee-dings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:17041-17049.
|
| [13] |
YOO S, LEE H S, MYEONG H,et al .End-to-end lane marker detection via row-wise classification[C]∥ Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Sea-ttle:IEEE,2020:4335-4343.
|
| [14] |
QIN Z, WANG H, LI X .Ultra fast structure-aware deep lane detection[C]∥ Proceedings of the 16th European Conference on Computer Vision.Glasgow:Springer,2020:276-291.
|
| [15] |
LIU L, CHEN X, ZHU S,et al .CondLaneNet:a top-to-down lane detection framework based on conditional convolution[C]∥ Proceedings of 2021 IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:3753-3762.
|
| [16] |
LIU S, QI L, QIN H,et al .Path aggregation network for instance segmentation[C]∥ Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:8759-8768.
|
| [17] |
YANG L, ZHANG R Y, LI L,et al .SimAM:a simple,parameter-free attention module for convolutional neural networks[C]∥ Proceedings of the 38th International Conference on Machine Learning.Wi-lliamstown:ML Research Press,2021:11863-11874.
|
| [18] |
HE K, ZHANG X, REN S,et al .Deep residual learning for image recognition[C]∥ Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.
|
| [19] |
LIN T Y, DOLLÁR P, GIRSHICK R,et al .Feature pyramid networks for object detection[C]∥ Procee-dings of IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:936-9442125.
|
| [20] |
CHOLLET F .Xception:deep learning with depthwise separable convolutions[C]∥ Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Re-cognition.Honolulu:IEEE,2017:1800-1807.
|
| [21] |
LIU S, HUANG D, WANG Y .Learning spatial fusion for single-shot object detection[EB/OL].(2019-11-21)[2024-12-10]..
|
| [22] |
CHEN L C, PAPANDREOU G, SCHROFF F,et al .Rethinking atrous convolution for semantic image segmentation[EB/OL].(2017-12-05)[2024-12-10]..
|
| [23] |
WANG Q, WU B, ZHU P,et al .ECA-Net:efficient channel attention for deep convolutional neural networks[C]∥ Proceedings of the IEEE/CVF confe-rence on computer vision and pattern recognition.Seattle:IEEE,2020:11531-11539.
|
| [24] |
TuSimple .TuSimple lane detection benchmark[EB/OL].(2017-7-17)[2024-12-10]..
|
| [25] |
TABELINI L, BERRIEL R, PAIXÃO T M,et al .Keep your eyes on the lane:real-time attention-guided lane detection[C]∥ Proceedings of 2021 IEEE/CVF COnference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:294-302.
|
| [26] |
GHAFOORIAN M, NUGTEREN C, BAKA N,et al .EL-GAN:embedding loss driven generative adversarial networks for lane detection[C]∥ Proceedings of the 15th European Conference on Computer Vision Workshops.Munich:Springer,2018:256-272.
|
| [27] |
XU H, WANG S, CAI X,et al .CurveLane-NAS:unifying lane-sensitive architecture search and adaptive point blending[C]∥ Proceedings of the 16th European Conference on Computer Vision.Glasgow:Springer,2020:689-704.
|
| [28] |
WANG J, MA Y, HUANG S,et al .A keypoint-based global association network for lane detection [C]∥ Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:1382-1391.
|
| [29] |
HONDA H, UCHIDA Y .CLRerNet:improving confidence of lane detection with LaneIoU[C]∥ Procee-dings of 2024 IEEE/CVF Winter Conference on Applications of Computer Vision.Waikoloa:IEEE,2024:1165-1174.
|