华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (9): 127-137.doi: 10.12141/j.issn.1000-565X.250017

• 能源、动力与电气工程 • 上一篇    下一篇

基于终端约束模型预测控制的区域供冷系统辅助电网调频控制策略

刘明波 劳子卿 董萍    

  1. 华南理工大学 电力学院/广东省绿色能源技术重点实验室,广东 广州 510640

  • 出版日期:2025-09-25 发布日期:2025-03-12

Auxiliary Frequency Regulation Control Strategy of District Cooling System Based on Model Predictive Control with Terminal Constraints 

LIU Mingbo  LAO Ziqing  DONG Ping   

  1. School of Electric Power Engineering/ Guangdong Key Laboratory of Clean Energy Technology, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Online:2025-09-25 Published:2025-03-12

摘要: 区域供冷系统是一类集中化的空调负荷,具有一定的调频潜力。本文提出了一种基于终端约束模型预测控制的区域供冷系统辅助电网调频控制策略,通过调节区域供冷系统的冷冻水流量和冷水机组关机数量控制区域供冷系统消耗的功率。首先建立考虑冷冻水流量与冷冻水出口温度关系的区域供冷系统动态模型和传统机组动态模型,构建系统的状态空间表达式。根据终端约束模型预测控制方法,建立区域供冷系统和传统机组联合调频控制模型,目标函数为最小化频率偏差、建筑物温度与人体舒适温度偏差、冷冻水流量控制指令、传统机组控制指令,终端约束包括终端代价函数和终端集。通过构造系统的李雅普诺夫函数,证明了终端约束模型预测控制问题是渐进稳定的。在10机39节点系统和某实际系统上分别进行了仿真计算,算例结果表明,加入终端约束后可提高系统的稳定性,采用区域供冷系统辅助电网调频能够帮助系统快速恢复额定频率,提升调频性能。此外,区域供冷系统参与电网调频不会对用户舒适度造成较大影响。

关键词: 区域供冷系统, 二次调频, 模型预测控制, 终端约束, 李雅普诺夫方法

Abstract: The district cooling system (DCS) belongs to a class of centralized air-conditioning loads and has frequency regulation potential. This paper proposes an auxiliary frequency regulation control strategy of DCS based on model predictive control (MPC) with terminal constraints, which controls the power consumption of the DCS by adjusting the chilled water flow rate and the number of chiller shutdowns. Firstly, the dynamic model of DCS and traditional units considering the relationship between chilled water flow rate and chilled water outlet temperature is established, and the state space expression of the system is constructed. Then, a joint frequency regulation control model for DCSs and traditional units is established based on terminal constrainted MPC method, with the objective function of minimizing frequency deviation, building temperature deviation from human comfort temperature, chilled water flow’s control instructions, and traditional unit’s control instructions. Moreover, the terminal constraints include terminal cost function and terminal set. It has been proven that the terminal constrained MPC problem is asymptotically stable by constructing the Lyapunov function of the system. Finally, simulations on a 10-unit 39-bus system and an actual power system verify that adding terminal constraints can improve system stability, and the use of DCS to assist in grid frequency regulation can help the system to quickly restore the rated frequency and improve regulation performance. In addition, the participation of DCSs in grid frequency regulation would not have a significant impact on comfort.

Key words: district cooling system, secondary frequency regulation, model predictive control, terminal constraints, Lyapunov method