华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (9): 138-148.doi: 10.12141/j.issn.1000-565X.240571

• 能源、动力与电气工程 • 上一篇    下一篇

火电厂大直径烟囱可溯源烟气流量测量方法

卢志民1, 谢子立1, 卢伟业2, 陈小玄2, 黄泳如1, 刘泽明1, 田学军1, 姚顺春1   

  1. 1.华南理工大学 电力学院,广东 广州 510640
    2.广东省特种设备检测研究院顺德检测院,广东 佛山 528300
  • 收稿日期:2024-12-05 出版日期:2025-09-25 发布日期:2025-03-12
  • 作者简介:卢志民(1979—),男,博士,教授,主要从事火电厂新型燃料燃烧技术及先进检测技术研究。E-mail: zhmlu@scut.edu.cn
  • 基金资助:
    国家自然科学基金项目(U22B20119);广东省自然科学基金杰出青年项目(2021B1515020071)

Traceable Flue Gas Flow Rate Measurement Method for Large-Diameter Stacks of Thermal Power Plant

LU Zhimin1, XIE Zili1, LU Weiye2, CHEN Xiaoxuan2, HUANG Yongru1, LIU Zeming1, TIAN Xuejun1, YAO Shunchun1   

  1. 1.School of Electric Power,South China University of Technology,Guangzhou 510640,Guangdong,China
    2.Guangdong Institute of Special Equipment Inspection and Research Shunde Branch,Foshan 528300,Guangdong,China
  • Received:2024-12-05 Online:2025-09-25 Published:2025-03-12
  • About author:卢志民(1979—),男,博士,教授,主要从事火电厂新型燃料燃烧技术及先进检测技术研究。E-mail: zhmlu@scut.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(U22B20119);the Guangdong Basic and Applied Basic Research Foundation(2021B1515020071)

摘要:

示踪气体稀释法能解决电厂大直径烟囱流场复杂导致的烟气流量测量结果误差大的问题。该方法具有可溯源性,且其测量原理与常规速度面积法不同,因此具有作为流量测量现场校准方法的潜力。为此,该文基于数值模拟方法分析示踪气体稀释法在火电厂烟囱烟气流量测量中的可行性与准确性,并在此基础上,研究示踪剂稀释比例、示踪剂注入截面对测量的影响,同时还设计不同示踪剂取样方案来评估测量的稳定性。结果表明:在约9DD为烟囱直径)高度处,示踪剂与烟气实现充分混合;示踪剂稀释比例过高或过低均会影响示踪剂与烟气的混合效率;示踪剂在烟道处注入能有效减小流量测量误差。在负荷率80%下,采取烟囱注入时,各取样方案的误差波动范围较大,但3点取样具有较稳定且良好的测量效果,在3D、8D、12D截面上的测量误差分别仅为-3.59%、-0.69%、-1.05%;水平烟道注入时,各取样方案的流量测量误差均不超过 ± 10%,且3点取样时,在3D、8D、12D截面上的测量误差分别仅为0.98%、-0.52%、0.21%,均在 ± 1%以内。该研究证明了示踪气体稀释法在大直径烟囱烟气流量测量中的可行性与准确性。

关键词: 大直径烟囱, 烟气流场, 流量测量, 溯源, 示踪气体稀释法

Abstract:

The tracer gas dilution method can address the issue of significant measurement errors in flue gas flow caused by the complex flow field in large-diameter stacks of power plants. The method is traceable and operates on a measurement principle different from the conventional velocity-area method, making it a promising candidate for on-site calibration of flow measurements. To this end, this paper employs numerical simulation to analyze the feasibility and accuracy of the tracer gas dilution method for measuring flue gas flow in power plant stacks. On this basis, it studies the influence of the tracer gas dilution ratio and injection cross-section on measurement results. In addition, different tracer gas sampling schemes were designed to evaluate the stability of the measurements. The results demonstrate that, at a height of approximately 9D (where D is the stack diameter), the tracer gas achieves full mixing with the flue gas; both excessively high and low tracer gas dilution ratios can negatively affect the mixing efficiency; injecting the tracer gas at the flue section can effectively reduce flow measurement errors. Under 80% load rate, when the tracer gas is injected into the stack, the measurement errors vary considerably across different sampling schemes. However, the three-point sampling method demonstrates a stable and accurate performance, with measurement errors of only -3.59%, -0.69%, and -1.05% at the 3D, 8D, and 12D cross-sections, respectively. When the tracer gas is injected into the horizontal flue, the flow measurement errors for all sampling schemes remain within ±10%. Specifically, with three-point sampling, the errors at the 3D, 8D, and 12D cross-sections are 0.98%, -0.52%, and 0.21%, respectively—all within ±1%. These results demonstrate the feasibility and accuracy of the tracer gas dilution method for flue gas flow measurement in large-diameter stacks.

Key words: large-diameter stack, flue gas flow field, flow rate measurement, traceability, tracer gas dilution method

中图分类号: