华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (7): 21-30.doi: 10.12141/j.issn.1000-565X.240320

• 能源、动力与电气工程 • 上一篇    下一篇

基于深度学习的质子交换膜燃料电池故障预测方法

左彬1,2, 董天航3, 张泽辉3, 王华珺4, 霍为炜5, 宫文峰6, 程军圣1   

  1. 1.湖南大学 机械与运载工程学院,湖南 长沙 410082
    2.中能建储能科技(武汉)有限公司,湖北 武汉 430200
    3.杭州电子科技大学 中国-奥地利人工智能先进制造“一带一路”联合实验室,浙江 杭州 310018
    4.中汽信息科技(天津)有限公司,天津 300300
    5.北京信息科技大学 机电工程学院,北京 100192
    6.北部湾大学 广西海洋工程装备与技术重点实验室,广西 钦州 535011
  • 收稿日期:2024-06-18 出版日期:2025-07-25 发布日期:2024-12-27
  • 通信作者: 张泽辉(1994—),男,博士,特聘副研究员,主要从事设备智能健康管理研究。 E-mail:zhangtianxia918@163.com
  • 作者简介:左彬(1984—),男,博士生,高级工程师,主要从事新能源智能运维研究。E-mail: zuobin123@ceec.net.cn
  • 基金资助:
    国家自然科学基金项目(52401376);国家重点研发计划项目(2022YFE0210700);浙江省“尖兵”“领雁”研发攻关计划项目(2024C03254);浙江省自然科学基金项目(LTGG24F030004);国家水运安全工程技术研究中心开放基金项目(A202403);宁东能源化工基地本级重点支持领域科技计划项目(2023NDKJXMLX059)

Proton Exchange Membrane Fuel Cell Fault Prediction Method Based on Deep Learning

ZUO Bin1,2, DONG Tianhang3, ZHANG Zehui3, WANG Huajun4, HUO Weiwei5, GONG Wenfeng6, CHENG Junsheng1   

  1. 1.College of Mechanical and Vehicle Engineering,Hunan University,Changsha 410082,Hunan,China
    2.CEEC Energy Storage Technology (Wuhan) Co. ,Ltd. ,Wuhan 430200,Hubei,China
    3.China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing,Hangzhou Dianzi University,Hangzhou 310018,Zhejiang,China
    4.China Auto Information Technology (Tianjin) Co. ,Ltd. ,Tianjin 300300,China
    5.College of Mechanical and Electrical Engineering,Beijing Information Science & Technology University,Beijing 100192,China
    6.Guangxi Key Laboratory of Ocean Engineering Equipment and Technology,Beibu Gulf University,Qinzhou 535011,Guangxi,China
  • Received:2024-06-18 Online:2025-07-25 Published:2024-12-27
  • Contact: 张泽辉(1994—),男,博士,特聘副研究员,主要从事设备智能健康管理研究。 E-mail:zhangtianxia918@163.com
  • About author:左彬(1984—),男,博士生,高级工程师,主要从事新能源智能运维研究。E-mail: zuobin123@ceec.net.cn
  • Supported by:
    the National Natural Science Foundation of China(52401376);the National Key R & D Program of China(2022YFE0210700);the“Pioneer”and“Leading Goose”R & D Program of Zhejiang Province(2024C03254);the Natural Science Foundation of Zhejiang Province(LTGG24F030004)

摘要:

质子交换膜燃料电池以其无污染、高效率、低噪音等优点,受到车辆、船舶以及航空航天等领域的重点关注,然而其可靠性问题阻碍了燃料电池的大规模商业化推广。为进一步提升燃料电池的可靠性,该文提出了一种基于深度学习的燃料电池故障预测方法。首先,针对电压、电流、湿度、温度等状态监测数据,根据燃料电池故障机理选取用于故障诊断的特征参数,以降低数据维度、抑制冗余信息,提高故障预测模型的运算效率,并采用标准化、时间滑窗等预处理方法,消除监测参数之间量纲不同的影响;然后,构建基于长短时记忆网络的燃料电池状态预测模型,其输入为预处理后的多维特征序列,输出为未来T个时间步长的燃料电池状态;最后,将预测的状态数据输入至卷积神经网络故障辨识模型,实现燃料电池故障状态预测。使用燃料电池实验故障数据对所提出的方法进行验证,结果表明,所提出的故障预测模型能够提前预测到故障。该文所提基于深度学习的燃料电池故障预测方法通过有效的数据预处理、基于长短时记忆网络的未来状态预测及基于卷积神经网络的故障识别,实现了对质子交换膜燃料电池运行异常的提前预测。

关键词: 燃料电池, 深度学习, 故障预测, 长短时记忆网络, 卷积神经网络

Abstract:

Proton exchange membrane fuel cells (PEMFCs) have attracted significant attention in the fields of transportation, marine engineering, and aerospace due to their advantages of pollution-free operation, high efficiency, and low noise. However, reliability issues hinder their large-scale commercialization. To further enhance fuel cell reliability, this paper proposed a fault prediction method based on deep learning. First, for operational monitoring data including voltage, current, humidity, and temperature, feature parameters for fault diagnosis were selected based on fuel cell failure mechanisms. This approach reduces data dimensionality, suppresses redundant information, and improves the computational efficiency of the prediction model. Additionally, pre-processing techniques such as normalization and sliding time windows were employed to eliminate the effects of differing dimensions among monitoring parameters. Then, a fuel cell state prediction model based on the long short-term memory (LSTM) network was constructed. Its inputs were preprocessed multidimensional feature sequences, and its output predicts the fuel cell state for the next T time steps. Finally, the predicted state data was fed into a convolutional neural network (CNN)-based fault identification model to achieve fuel cell fault state prediction. The proposed method was validated using experimental fault data from fuel cell tests, and the results show that the model can predict failures in advance. By virtue of effective data preprocessing, future state prediction via LSTM, and fault recognition through CNN, this deep learning-based approach enables early prediction of operational anomalies in proton exchange membrane fuel cells.

Key words: fuel cell, deep learning, fault prediction, long short-term memory network, convolutional neural network

中图分类号: