华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (7): 1-.doi: 10.12141/j.issn.1000-565X.240320

• 能源、动力与电气工程 •    

基于深度学习的质子交换膜燃料电池故障预测方法

左彬1,2   董天航3  张泽辉3   王华珺4   霍为炜5   宫文峰6   程军圣1

  

  1. 1.湖南大学 机械与运载工程学院,湖南 长沙 410082;

    2.中能建储能科技(武汉)有限公司,湖北 武汉 430000;

    3.杭州电子科技大学 中国-奥地利人工智能先进制造“一带一路”联合实验室,浙江 杭州 310018;

    4.中汽信息科技(天津)有限公司,天津 300300;

    5.北京信息科技大学 机电工程学院,北京 100192;

    6.北部湾大学 广西海洋工程装备与技术重点实验室,广西 钦州 535011


  • 出版日期:2025-07-25 发布日期:2024-12-27

Proton Exchange Membrane Fuel Cell Fault Prediction Method Based on Deep Learning

ZUO Bin1,2  DONG Tianhang3  ZHANG Zehui3  WANG Huajun4  HUO Weiwei5  GONG Wenfeng6  CHENG Junsheng1   

  1. 1. College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China;

    2. CEEC Energy Storage Technology (Wuhan) Co., Ltd,430000,Hunan, China;

    3. China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing, Hangzhou Dianzi University, 310000, Hangzhou, China;

    4. China Auto Information Technology (Tianjin) Co., Ltd, 300000, Tianjin China;

    5. Mechanical Electrical Engineering School, Beijing Information Science and Technology University, 100026, Beijing, China;

    6. Guangxi Key Laboratory of Ocean Engineering Equipment and Technology, Beibu Gulf University, 535011, Guangxi, China

  • Online:2025-07-25 Published:2024-12-27

摘要:

质子交换膜燃料电池以其无污染、高效率、低噪音等优点,受到车辆、船舶以及航空航天等领域的重点关注,然而其可靠性问题阻碍了燃料电池大规模商业化推广。为进一步提升燃料电池的可靠性,本文提出了一种基于深度学习的燃料电池故障预测方法。首先,采用标准化等数据预处理方法,消除监测参数之间不同量纲的影响,并基于机理知识选取特征参数,以降低原始数据维度,提高故障预测模型的运算效率。然后,构建基于长短时记忆网络的时间序列预测模型,预测燃料电池未来运行状态。最后,将预测的状态数据输入基于卷积神经网络的故障辨识模型,实现燃料电池故障预测。本文使用燃料电池实验故障数据对所提出的方法进行验证,实验结果表明,本文所提出的故障预测模型,能够提前10个时间步长预测到故障,准确率为96.8%。

关键词: 燃料电池, 深度学习, 故障预测, 长短时记忆网络, 卷积神经网络

Abstract:

Proton exchange membrane fuel cells (PEMFC) are highly valued in fields such as vehicles, ships, and aerospace due to their advantages of being pollution-free, highly efficient, and low-noise. However, reliability issues have hindered the large-scale commercial promotion of fuel cells. To further enhance the reliability of fuel cells, this paper proposes a fault prediction method based on deep learning. First, data preprocessing methods such as standardization are used to eliminate the influence of different dimensions among monitoring parameters. Feature parameters are selected based on mechanistic knowledge to reduce the dimensionality of the original data and improve the computational efficiency of the fault prediction model. Then, a time series prediction model based on Long Short-Term Memory (LSTM) networks is constructed to predict the future operating state of the fuel cell. Finally, the predicted state data is input into a fault identification model based on Convolutional Neural Networks (CNN) to achieve fuel cell fault prediction. The proposed method is validated using experimental fault data from fuel cells. The experimental results show that the proposed fault prediction model can predict faults 10 time steps in advance with an accuracy of 96.8%.

Key words: fuel cells, deep learning, fault prediction, long short-term memory network, convolutional neural network