华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (7): 11-20.doi: 10.12141/j.issn.1000-565X.240235

• 能源、动力与电气工程 • 上一篇    下一篇

臭氧对生物柴油替代物燃烧中多环芳烃生成的影响

甘云华1, 刘卓龙1, 匡华临2, 韩彦杰2, 李华1   

  1. 1.华南理工大学 电力学院,广东 广州 510640
    2.广州中电荔新热电有限公司,广东 广州 511340
  • 收稿日期:2024-05-15 出版日期:2025-07-25 发布日期:2024-12-27
  • 作者简介:甘云华(1979—),男,博士,教授,主要从事新型燃烧、高效传热等研究。E-mail: ganyh@scut.edu.cn
  • 基金资助:
    国家自然科学基金项目(52376108);广东省科技计划项目(2022A0505050004)

Effect of Ozone on Polycyclic Aromatic Hydrocarbon Formation in Combustion of Biodiesel Surrogate

GAN Yunhua1, LIU Zhuolong1, KUANG Hualin2, HAN Yanjie2, LI Hua1   

  1. 1.School of Electric Power Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
    2.Guangzhou Zhongdian Lixin Thermal Power Co. ,Ltd. ,Guangzhou 511340,Guangdong,China
  • Received:2024-05-15 Online:2025-07-25 Published:2024-12-27
  • About author:甘云华(1979—),男,博士,教授,主要从事新型燃烧、高效传热等研究。E-mail: ganyh@scut.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(52376108);the Science and Technology Planning Project of Guangdong Province(2022A0505050004)

摘要:

研究O3对生物柴油燃烧过程中多环芳烃(PAH)的影响,可为降低碳烟排放提供新思路。该研究建立了生物柴油替代物基础反应机理与PAH反应机理、O3反应机理耦合的骨架反应机理,用于模拟O3对生物柴油替代物对冲扩散火焰中PAH生成的影响和作用机制。该骨架反应机理共包括138种组分和608个反应。分析发现:O3的添加会使燃料侧形成一个局部快速温升区,随着初始O3摩尔分数的增大,该区域温升速率增大且位置越靠近燃料出口侧,这是燃料被初步氧化释放热量的结果;随着初始O3摩尔分数的增大,PAH的最大摩尔分数先增大后减小;当初始O3摩尔分数增大到0.04时,主要的PAH如苯(A1)、萘(A2)、蒽(A3)和芘(A4)的最大摩尔分数分别是初始O3摩尔分数为0.00时的4.57、6.76、16.16、12.38倍,说明O3的添加对PAH摩尔分数的影响较为显著,并且对A3的影响最大;同时,A1的生成途径发生变化,生成A1的主要反应机制从由C2H2主导转变为由C2H3主导;而当初始O3摩尔分数增大到0.12时,A1、A2、A3、A4的最大摩尔分数分别是初始O3摩尔分数为0.00时的0.880、0.357、0.375、0.143倍,原因在于C2H3自由基会被氧化,从而抑制了A1的生成。

关键词: 生物柴油, 多环芳烃, 臭氧, 氮氧化物, 反应动力学

Abstract:

Studying the effect of Ozone (O3) on polycyclic aromatic hydrocarbon (PAH) during the combustion process of biodiesel can provide new insights for reducing soot emissions. A skeletal reaction mechanism of biodiesel surrogates coupled with an O3 reaction mechanism and a PAH reaction mechanism was constructed for modeling the effect and mechanism of O3 on PAH formation in a counterflow flame of biodiesel surrogates. The final mechanism consists of 138 species and 608 reactions. Analysis show that the addition of O₃ creates a localized rapid temperature rise zone on the fuel side. As the initial O₃ mole fraction increases, the temperature rise rate in this zone intensifies and its position shifts closer to the fuel outlet, resulting from the preliminary oxidation of the fuel releasing heat. Furthermore, the maximum mole fraction of PAH initially increases and subsequently decreases with increasing initial O₃ mole fraction. When initial O3 mole fraction increases to 0.04, the maximum mole fraction of major PAH such as benzene (A1), naphthalene (A2), anthracene (A3), and pyrene (A4) are 4.57, 6.76, 16.16, 12.38 times that at initial O3 mole fraction of 0.00, respectively. The addition of O3 has a significant impact on the concentration of PAH, and has the greatest impact on A3. At the same time, the pathway of benzene (A1) generation shifts from C₂H₂-dominated to C₂H₃-dominated mechanisms. And when initial O3 mole fraction increases to 0.12, the maximum mole fractions of A1, A2, A3, and A4 are 0.880, 0.357, 0.375, and 0.143 times that at initial O3 mole fraction of 0.00. It is because that the C2H3 radicals are oxidized, thereby inhibiting the production of A1.

Key words: biodiesel, polycyclic aromatic hydrocarbon, ozone, nitrogen oxides, reaction kinetics

中图分类号: