华南理工大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (7): 12-20.doi: 10.12141/j.issn.1000-565X.220701

所属专题: 2023年机械工程

• 机械工程 • 上一篇    下一篇

来流方向对百叶窗翅片‒后扩型涡产生器热工水力性能的影响

胡兴军 罗雨霏 张靖龙 郭鹏 王靖宇 余天明   

  1. 吉林大学 汽车工程学院,吉林 长春 130022
  • 收稿日期:2022-10-25 出版日期:2023-07-25 发布日期:2023-04-04
  • 通信作者: 胡兴军(1976-),男,博士,教授,主要从事汽车空气动力学研究。 E-mail:hxj@jlu.edu.cn
  • 作者简介:胡兴军(1976-),男,博士,教授,主要从事汽车空气动力学研究。
  • 基金资助:
    国家自然科学基金资助项目(51875238);国家重点研发计划项目(2022YFE0208000)

Influence of Inflow Direction on Thermal-Hydraulic Performance of Louvered Fin-Common Flow Down Vortex Generator

HU Xingjun LUO Yufei ZHANG Jinglong GUO Peng WANG Jingyu YU Tianming   

  1. College of Automotive Engineering,Jilin University,Changchun 130022,Jilin,China
  • Received:2022-10-25 Online:2023-07-25 Published:2023-04-04
  • Contact: 胡兴军(1976-),男,博士,教授,主要从事汽车空气动力学研究。 E-mail:hxj@jlu.edu.cn
  • About author:胡兴军(1976-),男,博士,教授,主要从事汽车空气动力学研究。
  • Supported by:
    the National Natural Science Foundation of China(51875238);the National Key R&D Program of China(2022YFE0208000)

摘要:

为改善百叶窗翅片-扁管式热交换器(LFHE)的热工水力性能,将后扩型涡产生器(CFDVG)布置于LFHE冷却管表面,得到百叶窗翅片-后扩型涡产生器(LF-CFDVG)。考虑到主动进气格栅(AGS)的使用将引起热交换器芯部空气来流方向的改变,进一步研究了空气速度为3 m/s时来流方向对LF-CFDVG热工水力性能的影响。结果表明:受CFDVG出现后最小自由流面积减小、空气流速增大而导致的摩擦阻力增加以及CFDVG引起的压差阻力增大的影响,LF-CFDVG的压降Δp总是大于未布置CFDVG的LFHE(Baseline)。在来流方向角γ由0°增加到30°的过程中,受空气流速减小的影响,Baseline和LF-CFDVG中的压降Δp均减小,因此增加γ可降低空气流动阻力。与此同时,在CFDVG诱导形成的纵向涡输送的高速、低温主流对CFDVG间冷却管壁的冲击下,相较于Baseline,LF-CFDVG的对流换热能力显著增强。在γ由0°增加到30°的过程中,受空气流速及纵向涡强度、尺度减小的影响,Baseline和LF-CFDVG中的对流换热系数均减小,因此增加γ有损于换热能力。另外,在γ由0°增加到30°的过程中,LF-CFDVG的综合性能不断降低,因此增加γ不利于综合性能的改善。

关键词: 计算流体动力学, 来流方向, 百叶窗翅片-后扩型涡产生器, 热工水力性能

Abstract:

In order to improve the thermal-hydraulic performance of louvered fin and flat tube heat exchangers (LFHE), by arranging common flow down vortex generator (CFDVG) on LFHE’s flat tubes, this paper proposes louvered fin-common flow down vortex generator (LF-CFDVG). Then, considering the use of active grille air shutter (AGS) may change the inflow direction of air at the core of LFHE, the influence of inflow direction on the thermal-hydraulic performance of LF-CFDVG is further studied at the air velocity of 3 m/s. The results show that the pressure drop Δp of LF-CFDVG is always greater than that of Baseline (namely the LFHE without CFDVG) due to the impact of minimum free flow area reduction after the appearance of CFDVG, the increase in frictional resistance caused by the air velocity increment and the differential pressure resistance caused by CFDVG. In the process of γ (inflow direction angle) increasing from 0° to 30°, under the influence of air velocity reduction, Δp of both Baseline and LF-CFDVG decreases, so that increasing γ helps to reduce the resistance to air flow. At the same time, under the impact of high-speed and low-temperature main stream transported by the longitudinal vortices on the tube wall between CFDVGs, the convective heat transfer ability of LF-CFDVG is significantly enhanced, as compared with the Baseline. Moreover, in the process of γ increasing from 0° to 30°, the convective heat transfer coefficients of Baseline and LF-CFDVG both reduce due to the decrease of longitudinal vortex strength and scale, so that increasing γ impairs heat exchange ability. It is also found that the comprehensive performance of LF-CFDVG continuously decreases in the process of γ increasing from 0° to 30°. Thus, increasing γ is not conducive to the improvement of comprehensive performance.

Key words: computational fluid dynamics, inflow direction, louvered fin-common flow down vortex generator, thermal-hydraulic performance

中图分类号: