华南理工大学学报(自然科学版) ›› 2006, Vol. 34 ›› Issue (7): 129-132.

• 数学科学 • 上一篇    

四阶非线性泛函微分方程边值问题的正解

宋常修 翁佩萱   

  1. 华南师范大学 数学科学学院,广东 广州 510631
  • 收稿日期:2005-09-02 出版日期:2006-07-25 发布日期:2006-07-25
  • 通信作者: 宋常修(1975-),男,在职博士生,广东工业大学讲师,主要从事泛函微分方程的研究. E-mail:scx168@sohu.com
  • 作者简介:宋常修(1975-),男,在职博士生,广东工业大学讲师,主要从事泛函微分方程的研究.
  • 基金资助:

    国家自然科学基金资助项目(10571064);广东省自然科学基金资助项目(011471)

Positive Solutions to Boundary-Value Problem of Fourth-Order Nonlinear Functional Differential Equation

Song Chang-xiu  Weng Pei-xuan   

  1. School of Mathematical Sciences,South China Normal Univ.,Guangzhou 510631,Guangdong,China
  • Received:2005-09-02 Online:2006-07-25 Published:2006-07-25
  • Contact: 宋常修(1975-),男,在职博士生,广东工业大学讲师,主要从事泛函微分方程的研究. E-mail:scx168@sohu.com
  • About author:宋常修(1975-),男,在职博士生,广东工业大学讲师,主要从事泛函微分方程的研究.
  • Supported by:

    国家自然科学基金资助项目(10571064);广东省自然科学基金资助项目(011471)

摘要: 考虑一类四阶非线性泛函微分方程的边值问题,通过把所研究的问题转化为相应的全连续算子的不动点问题,利用锥不动点定理和不等式估计技巧,得到了其正解存在的几组充分条件.所得结果是相应常微分方程边值问题已有结论的拓广.文中还举例说明了其应用.

关键词: 奇异性, 非线性, 泛函微分方程, 正解,

Abstract:

This paper deals with the boundary-value problems of a class of fourth-order nonlinear functi0hal differen-tial equation. By transforming the boundary-value problem into the corresponding fixed-point problem of a complete-ly continuous operator,the sufficient condition for the existence of the positive solutions to the problem is given via the fixed-point theorem in cones and the inequality evaluation technology. Thus,the existing results of the boun-dary-value problem for the corresponding ordinary differential equation are extended. The applicability of the ob-tained results is finally proved by examples.

Key words: singularity, nonlinearity, functional differential equation, positive solution, cone