华南理工大学学报(自然科学版) ›› 2006, Vol. 34 ›› Issue (7): 124-127.

• 数学科学 • 上一篇    下一篇

一类非线性弹性梁方程解的存在定理

姚庆六1 李永祥2   

  1. 1.南京财经大学 应用数学系,江苏 南京 210003;2.西北师范大学 数学与信息科学学院,甘肃 兰州 730070
  • 收稿日期:2005-07-07 出版日期:2006-07-25 发布日期:2006-07-25
  • 通信作者: 姚庆六(1946-),男,教授,主要从事应用微分方程的研究. E-mail:yaoqingliu2002@hotmail.com
  • 作者简介:姚庆六(1946-),男,教授,主要从事应用微分方程的研究.
  • 基金资助:

    甘肃省自然科学基金资助项目(ZS031-A25-003-Z)

Existence Theorems of Solution to a Class of Nonlinear Elastic-Beam Equation

Yao Qing-liu1  Li Yong-xiang2   

  1. 1.Dept.of Applied Mathematics,Nanjing Univ.of Finance and Economics,Nanjing 210003,Jiangsu,China; 2.College of Mathematics and Information Science,Northwest Normal Univ.,Lanzhou 730070,Gansu,China
  • Received:2005-07-07 Online:2006-07-25 Published:2006-07-25
  • Contact: 姚庆六(1946-),男,教授,主要从事应用微分方程的研究. E-mail:yaoqingliu2002@hotmail.com
  • About author:姚庆六(1946-),男,教授,主要从事应用微分方程的研究.
  • Supported by:

    甘肃省自然科学基金资助项目(ZS031-A25-003-Z)

摘要: 考察了一类非线性四阶弹性梁方程解的存在性.在力学上,这类方程描述了一个端点固定、另一个端点被滑动夹子夹住的弹性梁的形变;其特点是非线性项含有未知函数的三阶导数.文中通过使用边值问题的分解技巧把这个方程转化为不动点方程.然后通过构造适当的Banach空间并利用Leray—Schauder不动点定理建立了这类方程解的4个存在定理.结果表明,只要非线性项在某个有界集上的“高度”是适当的,这类方程至少有一个解或者正解.

关键词: 非线性常微分方程, 两点边值问题, 解, 正解, 存在性, 不动点定理

Abstract:

The existence of the solution to a class of nonlinear fourth-order elastic-beam equation is investigated. This class of equation,whose nonlinear terms contain a three-order derivative of the unknown function,mechanical-ly describes the deformation of an elastic beam,one end of which is fixed and the other is clamped by sliding clamps. In the investigation,the decomposition technology of boundary-value problems is adopted to transform the elastic equation into a fixed-point equation. Besides,four existence theorems of the solution to this class of equation are presented by constructing a suitable Banach space and by means of Leray-Schauder fixed-point theorem. The re-suits show that this class of equation possesses at least one solution or one positive solution if the“height’’of its nonlinear item is appropriate in a bounded set.

Key words: nonlinear ordinary differential equation, two-point boundary-value problem, solution, positive solu-tion, existence, fixed-point theorem