华南理工大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (12): 43-51.doi: 10.12141/j.issn.1000-565X.230737

所属专题: 2024年机械工程

• 机械工程 • 上一篇    下一篇

基于响应面模型的电动汽车电池箱体优化设计

王宁珍1(), 秦康杰1, 唐亮1(), 上官利坚2, 周孚鹏3, 上官文斌4   

  1. 1.北京林业大学 工学院,北京 100083
    2.宁波拓普集团股份有限公司,浙江 宁波 315800
    3.祥鑫科技股份有限公司,广东 东莞 523870
    4.华南理工大学 机械与汽车工程学院,广东 广州 510640
  • 收稿日期:2023-11-27 出版日期:2024-12-25 发布日期:2024-03-14
  • 通信作者: 唐亮 E-mail:ningzhenwang@bjfu.edu.cn;happyliang@bjfu.edu.cn
  • 作者简介:王宁珍(1991—),女,博士,副教授,主要从事汽车防撞吸能与轻量化研究。E-mail: ningzhenwang@bjfu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51975057);北京市自然科学基金资助项目(3244034)

Optimization Design of Battery Box of Electric Vehicles Based on Response Surface Model

WANG Ningzhen1(), QIN Kangjie1, TANG Liang1(), SHANGGUAN Lijian2, ZHOU Fupeng3, SHANGGUAN Wenbin4   

  1. 1.The School of Technology,Beijing Forestry University,Beijing 100083,China
    2.Ningbo Tuopu Group Co. ,Ltd. ,Ningbo 315800,Zhejiang,China
    3.Lucky Harvest Co. ,Ltd. ,Dongguan 523870,Guangdong,China
    4.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2023-11-27 Online:2024-12-25 Published:2024-03-14
  • Contact: TANG Liang E-mail:ningzhenwang@bjfu.edu.cn;happyliang@bjfu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(51975057);Beijing Natural Science Foundation(3244034)

摘要:

为改善电动汽车电池箱的性能,加强各组件的安全可靠性,以某电动汽车的电池箱体为研究对象,对箱体内不同位置的电池模组的加速度响应进行研究,发现z方向3组电池模组的功率谱密度曲线的计算值和试验结果吻合性较好。考虑箱体上盖、箱体前端件、箱体后端件、箱体中部件、模组固定支架和加强件的尺寸参数,建立了电池箱主要部件的尺寸参数与固有频率、变形量和振动响应关系的响应面代理模型,开展了电池箱随机振动和机械冲击的计算,并验证了模型的正确性。基于Box-Behnken响应面法设计试验,获得了6个设计变量、3个水平的试验组合,得到相应的试验设计矩阵。采用多元回归分析拟合得到了多项式响应面近似模型,并使用多目标遗传算法进行迭代和优化,得到电池箱体的最佳尺寸参数。试验结果表明,与原模型相比,优化后箱体的一阶固有频率提高29.12%,变形量减少29.39%,振动响应降低40.31%,实现了轻量化。该文的建模和分析方法可用于计算电池箱体零部件对电池箱整体结构的影响,通过优化设计改善电池箱体的性能,加强各组件的安全可靠性。

关键词: 电池箱体, 响应面模型, 随机振动, 优化设计

Abstract:

In order to improve the performance of the battery box of electric vehicles and strengthen the safety and reliability of each component, the acceleration response of the battery modules at different positions inside the box was investigated with the battery box body of an electric vehicle, finding that the calculation results of the power spectral density curves of the three groups of battery modules in the z direction are in good agreement with the test results. Then, by considering the dimensional parameters, such as the top cover of the box, the front end parts of the box, the rear end parts of the box, the middle parts of the box, the module fixing brackets and the reinforcement parts, a response surface proxy model, which describes the relationship between the dimensional parameters of the battery box’s main parts and the intrinsic frequency, deformation as well as vibration response, was established, and the random vibration and the mechanical shock of the box were calculated, with the results verifying the correctness of the model. Based on the Box-Behnken response surface method for designing tests, several combinations of tests with six design variables and three levels were obtained, and the corresponding test design matrices were obtained. A polynomial response surface approximation model was fitted using multiple regression analysis, and the model was iterated and optimized using a multi-objective genetic algorithm to obtain the optimal dimensional parameters of the battery box. Experimental results show that, as compared with the original model, the first-order intrinsic frequency in the optimized case increases by 29.12%, the deformation reduces by 29.39%, and the vibration response reduces by 40.31%, which means a successful lightweighting. The modelling and analyzing methods in this paper can be used to calculate the influence of the battery box components on the overall structure of the battery box, improve the performance of the battery box through optimized design, and strengthen the safety and reliability of each component.

Key words: battery box, response surface model, random vibration, optimization design

中图分类号: