华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (2): 136-148.doi: 10.12141/j.issn.1000-565X.240266

• 土木建筑工程 • 上一篇    

流线型构件对TTU模型风荷载影响的大涡模拟研究

杨易1, 王喆1, 张之远2   

  1. 1.华南理工大学 亚热带建筑与城市科学全国重点实验室,广东 广州 510640
    2.中国市政工程中南设计研究总院 有限公司,湖北 武汉 430010
  • 收稿日期:2024-05-28 出版日期:2025-02-25 发布日期:2025-02-03
  • 作者简介:杨易(1975—),男,博士,教授,主要从事风工程研究。E-mail: ctyangyi@scut.edu.cn
  • 基金资助:
    国家自然科学基金项目(52178480);广东省基础与应用基础研究基金项目(2022A1515010350);亚热带建筑与城市科学全国重点实验室项目(2024ZB10)

LES Study on the Influence of Streamlined Accessories on the Wind Loads of TTU Model

YANG Yi1, WANG Zhe1, ZHANG Zhiyuan2   

  1. 1.State Key Laboratory of Subtropical Building and Urban Science,South China University of Technology,Guangzhou 510640,Guangdong,China
    2.Central & Southern China Municipal Engineering Design and Research Institute Co. ,Ltd. ,Wuhan 430010,Hubei,China
  • Received:2024-05-28 Online:2025-02-25 Published:2025-02-03
  • About author:杨易(1975—),男,博士,教授,主要从事风工程研究。E-mail: ctyangyi@scut.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(52178480);the Guangdong Province Basic and Applied Basic Research Fund Project(2022A1515010350)

摘要:

低矮建筑屋盖角区出现的高极值负压,是其围护结构抗风设计的重点。基于空气动力学原理,依据屋面角区绕流形态,基于TTU(Texas Tech University)标准建筑模型设计了一种屋面角区新型流线型附加构件,并通过改变附加构件高度、长度等参数,进行了10种工况的刚性模型测压风洞试验和大涡模拟(LES)对比研究,以探讨这类新型附加构件对屋面角区风荷载的影响和屋面抗风气动优化以及LES精度等问题。研究结果表明:屋面角区设置附加构件均可有效降低角区出现的极值负压,在所研究的10种工况中,屋面角区最不利平均负压最大可降低10%,最不利极值负压最大可降低25%;利用NSRFG(Narrowband Synthesis Random Flow Generation)方法生成入流湍流,采用LES得到的TTU模型各工况下的风荷载分布规律,虽然部分工况下屋面平均风压系数绝对值模拟结果偏大(平均误差为13.88%),而极值风压系数偏小(平均误差为9.72%),但整体上与风洞试验一致,表明利用NSRFG方法建立的低矮建筑绕流模型具有较好的精度;附加构件长度相对于高度而言对屋面角区风荷载的影响更大,等长附加构件高度增加1倍后,屋面角区极值风压系数降低6.15%,等高附件长度增加0.8倍后,屋面角区极值风压系数降低10.77%。

关键词: 低矮建筑, 风荷载, 大涡模拟, 风洞试验, 优化设计

Abstract:

The high extreme negative pressure that occurs in the corner area of the roof of a low-rise building is the focus of the wind-resistant design of its envelope. Based on the aerodynamic principle and the standard building model of TTU (Texas Tech University), this paper designed a new streamlined add-on accessories in the corner area of roof according to the wind flow patterns in the roof corner. By altering parameters such as the height and length of additional components, it conducted a comparative study involving rigid model pressure measurements in wind tunnel tests under 10 working conditions and Large Eddy Simulation (LES). The study aimed to explore the impact of these new types of additional components on wind loads in roof corner zones, aerodynamic optimization for wind resistance of roofs, and the accuracy of LES simulations.The study shows that: 1) the wind tunnel test results show that the installation of add-on accessories in the roof corner area can effectively reduce the extreme negative pressure in the corner area, and the most unfavorable mean negative pressure in the roof corner area can be reduced by 10%, and the most unfavorable extreme negative pressure can be reduced by 25% under the 10 working conditions studied; 2) the NSRFG(Narrowband Synthesis Random Flow Generation)method is used to generate the inlet turbulence, and the wind load distribution pattern in the TTU model under various conditions is obtained by the LES simulation. Although the absolute value of the mean wind pressure coefficient of the roof under some working conditions simulation results are larger (the mean error is 13.88%), and the extreme wind pressure coefficient is smaller (the mean error is 9.72%), it is overall consistent with the wind tunnel test, indicating that the NSRFG method has good accuracy; 3) LES numerical simulation parameter study shows that the influence of the length of the add-on accessories on the wind load in the roof corner area is greater than that of the height, the extreme wind pressure coefficient in the roof corner area decreases by 6.15% after the height of the equal length add-on accessories increase by 1 times; the extreme wind pressure coefficient in the roof corner area decreases by 10.77% after the length of the equal height add-on accessories increase by 0.8 times.

Key words: low-rise building, wind load, large eddy simulation, wind tunnel test, optimization design

中图分类号: