华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (10): 1-13.doi: 10.12141/j.issn.1000-565X.240535

• 交通安全 •    下一篇

融合短时交通流的高速公路事故影响因素分析

温惠英1  黄俊达1  黄坤火1  赵胜1  陈喆2  胡宇晴2     

  1. 1. 华南理工大学 土木与交通学院,广东 广州 510640

    2. 广东联合电子服务股份有限公司, 广东广州510620

  • 出版日期:2025-10-25 发布日期:2025-04-10

Analysis of Freeway Accident Factors Integrating Short-Term Traffic Flow

WEN Huiying1  HUANG Junda1  HUANG Kunhuo1  ZHAO Sheng1  CHEN Zhe2  HU Yuqing2   

  1. 1. South China University of Technology, Guangzhou 510640, Guangdong, China;

    2. Guangdong E-Serve United Co., Ltd., Guangzhou 510640, Guangdong, China

  • Online:2025-10-25 Published:2025-04-10

摘要:

高速公路交通事故的严重程度受多种因素共同影响,其中事故发生前的短时交通流特征作用尤为关键。为系统分析短时交通流状态对事故严重程度的影响,本文基于广东省2021-2022年南二环高速、济广高速和西部沿海高速三条高速公路的历史交通事故数据、ETC门架通行数据及气象数据,构建了考虑均值异质性的随机参数Logit模型,以探讨事故影响因素的异质性特征。本研究从道路特征、环境特征、交通流特征和事故特征四个方面筛选出29个潜在变量,分别采用标准多项Logit模型、随机参数Logit模型以及考虑均值异质性的随机参数Logit模型对事故严重程度进行建模。通过伪决定系数、赤池信息准则和贝叶斯信息准则对比分析模型拟合优度,结果显示,考虑均值异质性的随机参数Logit模型在拟合优度方面表现最优,能够更精准地捕捉事故影响因素的异质性特征。本文进一步基于变量的平均弹性系数评估不同因素对事故严重程度的影响,结果表明:在99%的置信水平下,道路特征、环境特征、事故特征和交通流特征等22个参数变量对事故的严重程度均存在显著影响,其中双向六车道、能见度增大等因素显著降低了事故的严重程度,路政救援处理时长、大型车平均速度、大型车比例、大型车与小型车速度差等变量的增大显著增大了事故的严重程度。本研究的结论可为高速公路事故预防和管理提供科学依据。

关键词: 高速公路, 事故严重程度, 影响因素分析, 短时交通流, 随机参数Logit模型

Abstract:

The severity of freeway traffic accidents is influenced by a multitude of factors, among which short-term traffic flow characteristics prior to an accident play a particularly critical role. To systematically analyze the impact of short-term traffic flow conditions on accident severity, this study draws on historical traffic accident data, ETC gantry passage data, and meteorological data from three expressways in Guangdong Province—Nan Erhuan Expressway, Jingguang Expressway, and Western Coastal Expressway—for the years 2021–2022. A random parameter Logit model incorporating mean heterogeneity is constructed to explore the heterogeneous characteristics of accident - related factors. This research identifies 29 potential variables from four perspectives: road characteristics, environmental characteristics, traffic flow characteristics, and accident characteristics. Then, it models accident severity using a standard multinomial Logit model, a random parameter Logit model, and a random parameter Logit model with mean heterogeneity. By comparing the goodness of fit of the models using the pseudo R-squared, Akaike Information Criterion, and Bayesian Information Criterion, the results demonstrate that the random parameter Logit model with mean heterogeneity outperforms the others, capturing the heterogeneous characteristics of accident - related factors more accurately. Further evaluation of the impact of different factors on accident severity based on the average elasticity coefficients of the variables shows that, at a 99% confidence level, 22 parameter variables related to road, environmental, accident, and traffic flow characteristics significantly affect accident severity. Specifically, certain factors such as a six-lane design and increased visibility reduce accident severity, while others, including road rescue processing time, average speed of large vehicles, proportion of large vehicles, and speed difference between large and small vehicles, intensify accident severity when increased. The findings of this study provide a scientific basis for freeway accident prevention and management.

Key words: freeway, injury severity, factors analysis, short-term traffic flow, random parameters Logit model