华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (7): 1-.doi: 10.12141/j.issn.1000-565X.240263

• 交通安全 •    

基于机器学习的山区高速公路货车事故影响因素分析

温惠英1 马肇良1 赵胜1 巫立明2 黄坤火1   

  1. 1. 华南理工大学 土木与交通学院,广东 510640;

    2. 广东联合电子服务股份有限公司,广东 510075

  • 出版日期:2025-07-25 发布日期:2025-01-17

Analysis of factors affecting truck accidents on mountainous freeways based on machine learning

WEN Huiying1  MA Zhaoliang1  ZHAO Sheng1  WU Liming2  HUANG Kunhuo1   

  1.  1. School of Civil Engineering and Transportation,South China University of Technology,Guangdong 510640, Guangzhou, China;

    2. Guangdong E-Serve United Co., Ltd., Guangdong 510075,Guangzhou, China

  • Online:2025-07-25 Published:2025-01-17

摘要:

为了深入研究山区高速公路货车事故严重程度影响因素,实现交通事故主动预防和精准防控,本文选择碰撞类型特征、车辆类型特征、道路特征和环境特征作为输入变量,以事故严重程度作为二分类输出变量,构建决策树模型(DT)、随机森林模型(RF)和支持向量机模型(SVM)等3种机器学习模型。根据准确率、精准率、召回率和F1指标对模型优劣进行评判,同时运用SHAP方法深入剖析机器学习模型的输出结果。研究结果表明,RF模型优于DT模型和SVM模型。从影响因素上看,翻车、无坡度、水泥路面、转弯、正面碰撞、事故时间19:00-6:59和路侧无防护措施变量对山区高速公路货车事故严重程度影响较大。

关键词: 交通安全, 山区高速公路, 事故严重程度, 货车事故, 机器学习

Abstract: In order to conduct in-depth research on the factors influencing the severity of truck accidents on mountainous freeways and achieve active and precise prevention and control of traffic accidents, this paper selects collision type features, vehicle type features, road features, and environmental features as input variables, and accident severity as binary output variables. Three machine learning models, including decision tree model (DT), random forest model (RF), and support vector machine model (SVM), are constructed. Evaluate the quality of the model based on accuracy, precision, recall, and F1 indicators, and use SHAP method to deeply analyze the output results of the machine learning model. The research results indicate that the RF model is superior to the DT model and SVM model. From the perspective of influencing factors, the variables of overturning, no slope, cement road surface, turning, frontal collision, accident time from 19:00 to 6:59, and no roadside protective measures have a significant impact on the severity of truck accidents on mountainous freeways.

Key words: traffic safety, mountainous freeways, accident severity, truck accidents, machine learning