Journal of South China University of Technology(Natural Science Edition) ›› 2025, Vol. 53 ›› Issue (6): 1-11.doi: 10.12141/j.issn.1000-565X.240357
• Architecture & Civil Engineering • Previous Articles Next Articles
KANG Lan1(), LI Rongwen1, SU Jingyu1, FENG Lei2
Received:
2024-07-15
Online:
2025-06-10
Published:
2024-09-27
Supported by:
CLC Number:
KANG Lan, LI Rongwen, SU Jingyu, FENG Lei. Influence of Laser Remelting Treatment on Fatigue Performance of Steel Structure Welded Joints[J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(6): 1-11.
Table 3
High cycle fatigue test results of laser remelted specimens and as-welded specimens"
试件编号 | σmax/MPa | ∆σ/MPa | 最大荷载/kN | 最小荷载/kN | 循环次数 | 断裂位置 |
---|---|---|---|---|---|---|
P25S05SR360-1 | 400 | 360 | 37.90 | 3.790 | 285 981 | 母材 |
P25S05SR360-2 | 312 223 | 母材 | ||||
P25S05SR315-1 | 360 | 315 | 33.43 | 3.343 | 310 672 | 母材 |
P25S05SR315-2* | 1 046 348 | 母材 | ||||
P25S05SR315-3 | 222 185 | 母材 | ||||
P25S05SR270-1 | 300 | 270 | 28.65 | 2.865 | 850 770 | 母材 |
P25S05SR270-2* | 2 000 000 | 未断 | ||||
P25S05SR270-3 | 703 375 | 母材 | ||||
P25S05SR225-1 | 250 | 225 | 23.88 | 2.388 | 922 661 | 母材 |
P25S05SR225-2 | 2 000 000 | 未断 | ||||
P00S00SR360-1 | 400 | 360 | 37.90 | 3.790 | 39 520 | 焊趾 |
P00S00SR360-2 | 93 127 | 焊趾 | ||||
P00S00SR315-1 | 360 | 315 | 33.43 | 3.343 | 136 924 | 焊趾 |
P00S00SR315-2 | 169 392 | 焊趾 | ||||
P00S00SR270-1 | 300 | 270 | 28.65 | 2.865 | 94 991 | 焊趾 |
P00S00SR270-2 | 300 727 | 焊趾 | ||||
P00S00SR225-1 | 250 | 225 | 23.88 | 2.388 | 406 456 | 焊趾 |
P00S00SR225-2 | 362 397 | 焊趾 |
1 | 郭宏超,毛宽宏,万金怀,等 .高强度钢材疲劳性能研究进展[J].建筑结构学报,2019,40(4):17-28. |
GUO Hongchao, MAO Kuanhong, WAN Jinhuai,et al .Research progress on fatigue properties of high strength steels[J].Journal of Building Structures,2019,40(4):17-28. | |
2 | RADAJ D, SONSINO C M, FRICKE W .Recent deve-lopments in local concepts of fatigue assessment of welded joints[J].International Journal of Fatigue,2009,31(1):2-11. |
3 | WANG D Q Q, YAO D D, GAO Z B,et al .Fatigue mechanism of medium-carbon steel welded joint:competitive impacts of various defects[J].International Journal of Fatigue,2021,151:106363/1-11. |
4 | BRAUN M, WANG X .A review of fatigue test data on weld toe grinding and weld profiling[J].International Journal of Fatigue,2021,145:106073/1-16. |
5 | RAMALHO A L, FERREIRA J A M, BRANCO C A G M .Fatigue behaviour of T welded joints rehabilitated by tungsten inert gas and plasma dressing[J].Materials & Design,2011,32(10):4705-4713. |
6 | GAN J, SUN D, WANG Z,et al .The effect of shot peening on fatigue life of Q345D T-welded joint[J].Journal of Constructional Steel Research,2016,126:74-82. |
7 | MALAKI M, DING H .A review of ultrasonic peening treatment[J].Materials & Design,2015,87:1072-1086. |
8 | DHAKAL B, SWAROOP S .Review:laser shock pee-ning as post welding treatment technique[J].Journal of Manufacturing Processes,2018,32:721-733. |
9 | CHAN W L, CHENG H K F .Hammer peening techno-logy—the past,present,and future[J].International Journal of Advanced Manufacturing Technology,2022,118(3/4):683-701. |
10 | CHAISE T, LI J, NELIAS D,et al .Modelling of multiple impacts for the prediction of distortions and residual stresses induced by ultrasonic shot peening (USP)[J].Journal of Materials Processing Techno-logy,2012,212(10):2080-2090. |
11 | CUNHA A, GIACOMELLI R O, KAUFMAN J,et al .An overview on laser shock peening process:from science to industrial applications[C]∥Proceedings of the 2021 SBFoton International Optics and Photonics Conference (SBFoton IOPC).Sao Carlos,Brazil:IEEE,2021:1-6. |
12 | 李坤,房嘉辉,廖若冰,等 .高性能金属激光能量场表面热处理技术研究现状及展望(特邀)[J].中国激光,2024,51(4):121-137. |
LI Kun, FANG Jiahui, LIAO Ruobing,et al .Current research status and future prospects for high-performance metal laser-energy-field surface heat treatment technologies (invited)[J].China Journal of Laser,2024,51(4):121-137. | |
13 | YU Y, ZHANG M, GUAN Y,et al .The effects of laser remelting on the microstructure and performance of bainitic steel[J].Metals,2019,9(8):912/1-12. |
14 | YAO Y, LI X, WANG Y Y,et al .Microstructural evolution and mechanical properties of Ti-Zr beta titanium alloy after laser surface remelting[J].Journal of Alloys and Compounds,2014,583:43-47. |
15 | VIDYASAGAR K E C, RANA A, KALYANASUNDARAM D .Optimization of laser parameters for improved corrosion resistance of nitinol[J].Materials and Manufacturing Processes,2020,35(14):1661-1669. |
16 | 李鸿鹏,盛金马,黎彬,等 .激光表面强化316L不锈钢的组织与性能研究[J].激光与光电子学进展,2020,57(19):199-204. |
LI Hongpeng, SHENG Jinma, LI Bin,et al .Microstructures and properties of laser surface-reinforced 316L stainless steel[J].Laser & Optoelectronics Progress,2020,57(19):199-204. | |
17 | LAGO J, BOKŮVKA O, NOVÝ F .The weld toe improvement of advanced HSLA steel by laser remelting[J].Materials Today:Proceedings,2016,3(4):1037-1040. |
18 | STAMM H, HOLZWARTH U, BOERMAN D J,et al .Effect of laser surface treatment on high cycle fatigue of AISI 316L stainless steel[J].Fatigue & Fracture of Engineering Materials & Structures,1996,19(8):985-995. |
19 | ZHAO X, ZHANG H, LIU Y .Effect of laser surface remelting on the fatigue crack propagation rate of 40Cr steel[J].Results in Physics,2019,12:424-431. |
20 | SARKAR S, KUMAR C S, NATH A K. Effects of different surface modifications on the fatigue life of selective laser melted 15-5 PH stainless steel[J].Mate-rials Science & Engineering A,2019,762:138109/1-14. |
21 | FROSTEVARG J, TORKAMANY M J, POWELL J,et al .Improving weld quality by laser re-melting[J].Journal of Laser Applications,2014,26(4):041502/1-4. |
22 | POWELL J, ILAR T, FROSTEVARG J,et al .Weld root instabilities in fiber laser welding[J].Journal of Laser Applications,2015,27:S29008/1-5. |
23 | 邓德伟,马云波,马玉山,等 .重熔及退火对316L不锈钢激光熔覆层残余应力的影响[J].金属热处理,2020,45(8):113-118. |
DENG Dewei, MA Yunbo, MA Yushan,et al .Influence of remelting and annealing on residual stress of 316L stainless steel laser clad layer[J].Heat Treatment of Metals,2020,45(8):113-118. | |
24 | GUENNEC B, UENO A, SAKAI T,et al .Effect of the loading frequency on fatigue properties of JIS S15C low carbon steel and some discussions based on micro-plasticity behavior[J].International Journal of Fatigue,2014,66:29-38. |
25 | HONG Y, HU Y, ZHAO A .Effects of loading frequency on fatigue behavior of metallic materials:a li-terature review[J].Fatigue & Fracture of Engineering Materials & Structures,2023,46(8):3077-3098. |
26 | LIAO X, WANG Y, WANG Z,et al .Effect of low temperatures on constant amplitude fatigue properties of Q345qD steel butt-welded joints[J].Engineering Failure Analysis,2019,105:597-609. |
27 | TONG L W, NIU L C, REN Z Z,et al .Experimental investigation on fatigue behavior of butt-welded high-strength steel plates[J].Thin-Walled Structures,2021,165:107956/1-11. |
28 | Specification for structural steel buildings:ANSI/AI [S]. |
29 | Eurocode 3:design of steel structure-Part 1-9:fatigue:EN 1993-1-9 [S]. |
30 | Fatigue design of offshore steel structures:DNV-RP-C203 [S]. |
[1] | QIANG Xuhong, TIAN Weixiao, JIANG Xu, et al. Intelligent Method for Identifying Damage of Steel Members with Localized Random Pitting Based on Convolutional Neural Network [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(11): 43-54. |
[2] | KANG Lan HONG Shutao. Experimental Investigation on Fatigue Properties of Q690D High Strength Steel [J]. Journal of South China University of Technology(Natural Science Edition), 2021, 49(8): 35-42. |
[3] | XU Daofen, CHEN Kanghua, XING Jun, et al. Microstructure and Corrosion Behavior of 2219 Aluminum Alloy Forging's Joint by TIG Welding [J]. Journal of South China University of Technology(Natural Science Edition), 2020, 48(3): 116-125. |
[4] | SHI Kairong PAN Wenzhi JIANG Zhengrong Lü Junfeng LUO Bin . Mechanical Behaviors of Large-tonnage Complex Steel Spherical Hinged Support: Rotation Behavior Subjected to Axial Compressive Load [J]. Journal of South China University of Technology(Natural Science Edition), 2019, 47(8): 9-15. |
[5] | HONG Xiaobin ZI Wenjiang YU Rong LUO Zongqiang HE Zhenwei . Fusion Assessment on the Credibility of Cloud Nondestructive Testing for Large-Scale Steel Structures [J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(3): 70-77. |
[6] | LI Wanrun ZHANG Guangli LIU Yufei FANG Zhao LI Aiqun DU Yongfeng. Welding Residual Stress Simulation and Experimental Verification in Beamto-Column Joints of Q345B Steel [J]. Journal of South China University of Technology(Natural Science Edition), 2019, 47(10): 114-123. |
[7] | Hu Yun Liu Shao- jun Liao Ya- shi Ding Sheng. Fatigue Strength Probability Distribution Inference Based on Monte Carlo Simulation Method [J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(9): 35-40. |
[8] | Zhang Shu-kuan Huang Pei-yan Zhao Chuan-yu. Numerical Analysis of Stress Intensity Factor of Surface Crack in Steel Plate Strengthened with CFL Under Bending Load [J]. Journal of South China University of Technology(Natural Science Edition), 2012, 40(4): 162-168. |
[9] | Pan Duo-zhong Wei De-min. Simulation Method of Step-by-Step Construction of Long-Span Steel Structures [J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(9): 123-126,137. |
[10] | Ye Bang-yan Peng Rui-tao Tang Xin-zi Liang Zhong-wei . Residual Stress and Surface Morphology of Pre-Stress Hard Cutting [J]. Journal of South China University of Technology (Natural Science Edition), 2008, 36(4): 6-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||