Journal of South China University of Technology(Natural Science Edition) ›› 2023, Vol. 51 ›› Issue (11): 82-92.doi: 10.12141/j.issn.1000-565X.220649
Special Issue: 2023年材料科学与技术
• Materials Science & Technology • Previous Articles Next Articles
YANG Xufeng LIU Zeqing ZHANG Yi
Received:
2022-10-09
Online:
2023-11-25
Published:
2023-03-27
About author:
杨旭锋(1988-),男,博士,副教授,主要从事结构可靠性分析方法研究。E-mail:xufengyang0322@gmail. com
Supported by:
CLC Number:
YANG Xufeng, LIU Zeqing, ZHANG Yi. Estimation of P-S-N Curve of Metal Materials Based on Bayesian Neural Network[J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(11): 82-92.
Table 1
Fatigue life test data of 2524-T3 aluminum alloy"
序号 | lg N | |||
---|---|---|---|---|
S=200 MPa | S=300 MPa | S=350 MPa | S=400 MPa | |
1 | 5.603 | 5.028 | 4.784 | 4.477 |
2 | 5.544 | 5.074 | 4.842 | 4.400 |
3 | 5.528 | 5.016 | 4.776 | 4.426 |
4 | 5.630 | 4.894 | 4.813 | 4.462 |
5 | 5.594 | 4.993 | 4.813 | 4.592 |
6 | 5.540 | 5.071 | 4.860 | 4.411 |
7 | 5.581 | 5.024 | 4.798 | 4.447 |
8 | 5.548 | 5.035 | 4.776 | 4.402 |
9 | 5.426 | 4.954 | 4.758 | 4.665 |
10 | 5.567 | 5.039 | 4.770 | 4.475 |
11 | 5.554 | 5.098 | 4.755 | 4.458 |
12 | 5.627 | 5.057 | 4.837 | 4.551 |
13 | 5.630 | 5.092 | 4.736 | 4.525 |
14 | 5.596 | 5.082 | 4.842 | 4.641 |
15 | 5.626 | 5.005 | 4.796 |
Table 2
Fatigue life test data of 2024-T4 aluminum alloy"
序号 | N | ||||||||
---|---|---|---|---|---|---|---|---|---|
S=313.8 MPa | S=333.8 MPa | S=353.8 MPa | S=371.7 MPa | S=411.7 MPa | S=451.7 MPa | S=490.3 MPa | S=530.3 MPa | S=550.3 MPa | |
1 | 481 100 | 477 000 | 282 100 | 213 100 | 131 800 | 78 400 | 51 100 | 31 700 | 27 200 |
2 | 628 100 | 517 600 | 284 200 | 218 900 | 133 900 | 79 200 | 53 200 | 32 400 | 27 600 |
3 | 1 355 700 | 562 600 | 291 400 | 222 500 | 136 700 | 79 800 | 53 500 | 33 200 | 28 900 |
4 | 1 428 000 | 587 800 | 311 700 | 234 000 | 137 100 | 82 300 | 54 200 | 33 700 | 29 300 |
5 | 2 407 100 | 658 900 | 315 900 | 241 500 | 139 300 | 85 800 | 55 000 | 35 500 | 29 900 |
6 | 2 489 300 | 710 700 | 317 600 | 246 800 | 140 100 | 86 000 | 57 000 | 35 700 | 30 100 |
7 | 3 963 400 | 763 200 | 331 300 | 248 600 | 140 400 | 86 600 | 57 000 | 35 900 | 30 600 |
8 | 3 969 900 | 785 000 | 335 300 | 251 200 | 145 700 | 88 100 | 57 200 | 36 000 | 30 700 |
9 | 4 301 900 | 875 200 | 391 600 | 251 300 | 145 900 | 88 500 | 57 700 | 36 500 | 30 800 |
10 | 5 896 300 | 984 900 | 405 900 | 252 700 | 146 000 | 88 700 | 58 400 | 36 800 | 30 900 |
11 | 6 092 200 | 1 039 500 | 411 500 | 255 600 | 146 900 | 89 300 | 58 500 | 37 000 | 30 900 |
12 | 6 684 500 | 1 166 800 | 418 800 | 261 600 | 148 600 | 90 300 | 59 200 | 37 000 | 31 000 |
13 | 8 618 400 | 1 283 600 | 445 000 | 261 600 | 148 600 | 90 800 | 59 300 | 37 200 | 31 200 |
14 | 8 961 900 | 1 359 800 | 447 700 | 262 400 | 148 800 | 92 200 | 59 800 | 37 500 | 31 200 |
15 | 9 695 300 | 1 614 900 | 455 100 | 262 900 | 149 400 | 92 500 | 59 800 | 37 500 | 31 700 |
16 | 9 716 800 | 1 699 600 | 457 800 | 265 300 | 152 500 | 93 200 | 60 900 | 37 600 | 31 800 |
17 | 10 296 100 | 1 704 300 | 457 900 | 265 700 | 153 600 | 93 400 | 61 400 | 37 600 | 31 900 |
18 | 12 000 000 | 1 851 200 | 472 200 | 268 700 | 154 200 | 93 700 | 61 400 | 37 900 | 32 100 |
19 | 12 000 000 | 2 087 100 | 501 100 | 274 000 | 155 000 | 94 100 | 61 600 | 38 200 | 32 400 |
20 | 12 000 000 | 2 177 800 | 533 600 | 280 500 | 155 800 | 95 300 | 62 500 | 38 600 | 32 400 |
21 | 12 000 000 | 2 305 800 | 587 200 | 282 100 | 156 200 | 95 500 | 62 900 | 39 400 | 34 900 |
22 | 2 469 600 | 594 800 | 284 800 | 156 700 | 95 600 | 63 000 | 39 600 | ||
23 | 2 628 900 | 647 900 | 287 900 | 157 100 | 96 300 | 63 100 | 40 300 | ||
24 | 2 746 800 | 670 900 | 289 300 | 159 200 | 96 600 | 63 300 | 40 500 | ||
25 | 3 386 300 | 708 900 | 306 200 | 160 900 | 96 700 | 63 400 | 40 700 | ||
26 | 3 399 800 | 739 600 | 310 100 | 161 000 | 99 200 | 63 600 | 40 800 | ||
27 | 3 555 900 | 880 600 | 323 600 | 163 900 | 99 500 | 63 900 | 40 900 | ||
28 | 4 336 400 | 927 800 | 326 200 | 164 300 | 107 500 | 66 700 | 41 000 | ||
29 | 4 915 400 | 933 500 | 340 200 | 168 400 | 107 700 | 67 700 | 41 300 | ||
30 | 5 291 200 | 1564 700 | 343 200 | 183 200 | 110 600 | 70 000 | 42 700 |
Table 3
Fatigue life test data of S420MC steel"
序号 | S/MPa | N | 序号 | S/MPa | N | 序号 | S/MPa | N | 序号 | S/MPa | N | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 204 | 946 200 | 18 | 229 | 690 600 | 35 | 248 | 698 500 | 52 | 271 | 313 000 | ||||||
2 | 207 | 1 851 500 | 19 | 229 | 730 500 | 36 | 250 | 313 700 | 53 | 271 | 346 100 | ||||||
3 | 210 | 1 281 700 | 20 | 229 | 1 009 600 | 37 | 250 | 256 900 | 54 | 286 | 61 600 | ||||||
4 | 211 | 1 215 000 | 21 | 229 | 1 555 800 | 38 | 250 | 238 800 | 55 | 286 | 119 400 | ||||||
5 | 214 | 628 100 | 22 | 229 | 1 358 000 | 39 | 250 | 323 500 | 56 | 286 | 81 600 | ||||||
6 | 214 | 1 307 600 | 23 | 229 | 1 447 200 | 40 | 250 | 213 700 | 57 | 286 | 132 000 | ||||||
7 | 214 | 1 316 000 | 24 | 232 | 488 400 | 41 | 250 | 389 000 | 58 | 286 | 130 000 | ||||||
8 | 214 | 1 410 600 | 25 | 232 | 380 500 | 42 | 267 | 199 400 | 59 | 286 | 104 300 | ||||||
9 | 214 | 851 900 | 26 | 232 | 567 000 | 43 | 267 | 194 000 | 60 | 286 | 97 400 | ||||||
10 | 214 | 1 566 600 | 27 | 232 | 701 800 | 44 | 267 | 224 800 | 61 | 286 | 175 600 | ||||||
11 | 214 | 959 900 | 28 | 232 | 553 000 | 45 | 268 | 120 800 | 62 | 286 | 136 500 | ||||||
12 | 214 | 1 159 400 | 29 | 232 | 630 000 | 46 | 268 | 139 800 | 63 | 295 | 136 800 | ||||||
13 | 219 | 1 095 800 | 30 | 248 | 286 700 | 47 | 268 | 159 100 | 64 | 295 | 129 900 | ||||||
14 | 219 | 1 499 200 | 31 | 248 | 376 900 | 48 | 268 | 187 100 | 65 | 295 | 151 400 | ||||||
15 | 221 | 1 926 800 | 32 | 248 | 488 300 | 49 | 268 | 219 600 | |||||||||
16 | 224 | 1 999 500 | 33 | 248 | 650 100 | 50 | 268 | 238 600 | |||||||||
17 | 224 | 997 600 | 34 | 248 | 585 900 | 51 | 271 | 259 500 |
1 | STROMEYER C E .The determination of fatigue limits under alternating stress conditions[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,1914,90:411-425. |
2 | MATHUR S, GOPE P C, SHARMA J K .Prediction of fatigue lives of composites material by artificial neural network[C]∥ Proceedings of the SEM 2007 Annual Conference and Exposition.Springfield:Society for Experimental Mechanics,2007:260/1-8. |
3 | TROUDET T, MERRILL W .A real time neural net estimator of fatigue life[C]∥ Proceedings of IJCNN International Joint Conference on Neural Networks.San Diego:IEEE,1990:59-64. |
4 | ARTYMIAK P, BUKOWSKI L, FELIKS J,et al .Determination of S-N curves with the application of artificial neural networks[J].Fatigue & Fracture of Engineering Materials & Structures,1999,22(8):723-728. |
5 | VASSILOPOULOS A P, GEORGOPOULOS E F, DIONYSOPOULOS V .Artificial neural networks in spectrum fatigue life prediction of composite materials[J].International Journal of Fatigue,2007,29(1):20-29. |
6 | 温海骏,孟小玲,曾艾婧,等 .基于二阶粒子群算法优化的神经网络再制造工件疲劳寿命预测[J].科学技术与工程,2019,19(21):21-26. |
WEN Haijun, MENG Xiaoling, ZENG Aijing,et a1 .Fatigue life prediction of neural network remanufactured based on second-order particle swarm optimization[J].Science Technology and Engineering,2019,19(21):2l-26. | |
7 | 胡贇,刘少军,廖雅诗,等 .基于蒙特卡罗模拟方法的疲劳强度概率分布推断[J].华南理工大学学报(自然科学版),2014,42(9):35-40. |
HU Yun, LIU Shao-jun, LIAO Ya-shi,et al .Fatigue strength probability distribution inference based on Monte Carlo simulation method [J].Journal of South China University of Technology (Natural Science Edition),2014,42(9):35-40. | |
8 | LING J, PAN J .A maximum likelihood method for estimating P-S-N curves[J].International Journal of Fatigue,1997,19(5):415-419. |
9 | 赵永翔,王金诺,高庆 .估计三种常用疲劳应力-寿命模型P-S-N曲线的统一经典极大似然法[J].应用力学学报,2001,18(1):83-90. |
ZHAO Yongxiang, WANG Jinnuo, GAO Qing .Unified classical maximum likelihood method for estimating P-S-N curves of three commonly used fatigue stress life models[J].Chinese Journal of Applied Mechanics,2001,18(1):83-90. | |
10 | KLEMENC J, FAJDIGA M .Estimating S-N curves and their scatter using a differential ant-stigmergy algorithm[J].International Journal of Fatigue,2012,43:90-97. |
11 | XIE L, LIU J, WU N,et al .Backwards statistical inference method for P-S-N curve fitting with small-sample experiment data[J].International Journal of Fatigue,2014,63:62-67. |
12 | 刘潇然,孙秦,梁珂 .工程p-S-N曲线的小子样预测方法研究[J].西北工业大学学报,2018,36(5):831-838. |
LIU Xiaoran, SUN Qin, LIANG Ke .A small sample prediction method for engineering p-S-N curve[J].Journal of Northwestern Polytechnical University,2018,36(5):831-838. | |
13 | GUIDA M, PENTA F .A Bayesian analysis of fatigue data[J].Structural Safety,2010,32(1):64-76. |
14 | BABUŠKA I, SAWLAN Z, SCAVINO M,et al .Bayesian inference and model comparison for metallic fatigue data[J].Computer Methods in Applied Mechanics & Engineering,2016,304:171-196. |
15 | LIU Xiao-Wei, LU Da-Gang, HOOGENBOOM P C J .Hierarchical Bayesian fatigue data analysis[J].International Journal of Fatigue,2017,100:418-428. |
16 | CHEN J, LIU S, ZHANG W,et al .Uncertainty quantification of fatigue S-N curves with sparse data using hierarchical Bayesian data augmentation[J].International Journal of Fatigue,2020,134:105511/1-12. |
17 | CHEN J, LIU Y .Probabilistic physics-guided machine learning for fatigue data analysis[J].Expert Systems with Applications,2021,168:114316/1-14. |
18 | MACKAY D J C .Bayesian methods for adaptive models[D].Pasadena:California Institute of Technology,1992. |
19 | NEAL R M .Bayesian learning for neural networks[M].New York:Springer,1996. |
20 | YANG L, MENG X, KARNIADAKIS G E .B-PINNs:Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J].Journal of Computational Physics,2021,425:109913/1-23. |
21 | OLIVIER A, SHIELDS M D, GRAHAM-BRADY L .Bayesian neural networks for uncertainty quantification in data-driven materials modeling[J].Computer Methods in Applied Mechanics and Engineering,2021,386:114079/1-27. |
22 | 冯蔚 .基于深度学习的多孔介质中多相流预测及不确定性分析[D].合肥:中国科学技术大学,2020. |
23 | LAU K, GUO W, KIERNAN B .Non-linear carbon dioxide determination using infrared gas sensors and neural networks with Bayesian regularization[J].Sensors and Actuators B:Chemical,2009,136(1):242-247. |
24 | HERNÁNDEZ-LOBATO J M, LI Y, ROWLAND M,et al .Black-box α-divergence minimization[C]∥ Proceedings of the 33rd International Conference on Machine Learning.New York:PMLR,2016:1511-1520. |
25 | BLUNDELL C, CORNEBISE J, KAVUKCUOGLU K,et al .Weight uncertainty in neural networks[C]∥ Proceedings of the 32nd International Conference on Machine Learning.Lille:PMLR,2015:1613-1622. |
26 | SHEN C .The statistical analysis of fatigue data[D].Tucson:University of Arizona,1994. |
27 | HOVORNYAN A V, ILASHCHUK T O .An artificial intelligence model to predict 12-month mortality among patients with myocardial infarction[J].European Journal of Preventive Cardiology,2022,29():i436-i437. |
28 | TIPU A J S, CONBHUÍ P Ó, HOWLEY E .Applying neural networks to predict HPC-I/O bandwidth over seismic data on Lustre file system for ExSeisDat[J].Cluster Computing,2022,25:2661-2682. |
29 | MISTRY J, INDEN B .An approach to sign language translation using the Intel RealSense camera[C]∥ Proceedings of 2018 the 10th Computer Science and Electronic Engineering.Colchester:IEEE,2018:219-224. |
30 | HERYANTO A, GUNANTA A .High availability in server clusters by using backpropagation neural network method[J].Jurnal Teknologi dan Open Source,2021,4(1):8-18. |
31 | FENG De-Cheng, LIU Zhen-Tao, WANG Xiao-Dan,et al .Machine learning-based compressive strength prediction for concrete:an adaptive boosting approach[J].Construction and Building Materials,2020,230:117000/1-11. |
32 | 刘志状,吴昊 .一种基于参数影响的数据驱动下的疲劳寿命预测方法[J].机械工程学报,2023,59(4):71-79. |
LIU Zhizhuang, WU Hao .A data-driven fatigue life prediction method based on the influence of parameters[J].Journal of Mechanical Engineering,2023,59(4):71-79. | |
33 | HASTIE T, TIBSHIRANI R, FRIEDMAN J .The elements of statistical learning:data mining,inference,and prediction[M].2nd ed.New York:Springer,2009. |
[1] | ZHAO Er-nian QU Wei-lian ZHOU Qiang. Multiaxial Fatigue Life Prediction of Metallic Materials Based on Critical Plane Damage Parameter [J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(2): 130-136,152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||