Journal of South China University of Technology (Natural Science Edition) ›› 2013, Vol. 41 ›› Issue (5): 55-60.doi: 10.3969/j.issn.1000-565X.2013.05.009

• Computer Science & Technology • Previous Articles     Next Articles

Super-Resolution Image Reconstruction Based on Stepwise Magnification of Neighbor Embedding

Liao Xiu-xiu1 Han Guo-qiang1 Wo Yan1 Chen Xiang-ji2   

  1. 1.School of Computer Science and Engineering,South China University of Technology,Guangzhou 510006,Guangdong,China;2.College of Information,South China Agricultural University,Guangzhou 510642,Guangdong,China
  • Received:2012-09-24 Revised:2012-12-25 Online:2013-05-25 Published:2013-04-01
  • Contact: 廖秀秀(1983-),女,博士生,主要从事图像恢复与超分辨率重建、图像配准研究. E-mail:lxx0221@yahoo.com.cn
  • About author:廖秀秀(1983-),女,博士生,主要从事图像恢复与超分辨率重建、图像配准研究.
  • Supported by:

    NSFC -广东省联合基金资助项目( U1035004) ; 国家自然科学基金青年科学基金资助项目( 61003270) ; 国家自然科学基金面上项目( 61070090) ; 广东省工业科技计划项目( 2009B030803004) ; 华南理工大学中央高校基本科研业务费专项资金重点资助项目( 2012ZZ0066) ; 广东省重大科技专项( 2010A080402005) ; 广东省自然科学基金博士启动项目( 10452840301004638) ; 广州市科技支撑重点项目( 2012J4300030)

Abstract:

Proposed in this paper is a constrained stepwise magnification strategy for the super-resolution image reconstructionbased on the neighbor embedding,which is used to increase the neighborhood-preserving rate and improvethe reconstruction effect.Then,the iterative back-projection constraint is used to modify the magnified imagein each step,which decreases the errors that may occur during the learning procedure and makes the solution of eachstep evolve in a correct direction.Moreover,in order to take full advantage of the information of the test image,ajoint training set is constructed by concatenating the on-line training set learned from the test image and the offlinetraining set learned from the training image database,and is used to further improve the algorithm performance.Experimentalresults show that,as compared with some existing algorithms,the proposed algorithm helps to obtainbetter visual effect and more objective evaluation results.

Key words: image processing, super-resolution reconstruction, neighbor embedding, stepwise magnification, itera-tiveback projection, joint training set

CLC Number: