Journal of South China University of Technology (Natural Science Edition) ›› 2005, Vol. 33 ›› Issue (5): 1-6.

    Next Articles

Fitness Function for Evolutionary Learning of Predictive Association Rules

Xu Xiao-yuan  Han Guo-qiang  Min Hua-qing   

  1. Colege of Computer Science and Engineering,South China Univ.of Tech.,Guangzhou 510640,Guangdong,China
  • Received:2004-07-05 Online:2005-05-25 Published:2005-05-25
  • Contact: 许孝元(1964-),男,在职博士生,广东工业大学副教授,主要从事数据挖掘、机器学习与智能Agent方面的研究 E-mail:xiaoyxu@yahoo.corn.cn
  • About author:许孝元(1964-),男,在职博士生,广东工业大学副教授,主要从事数据挖掘、机器学习与智能Agent方面的研究
  • Supported by:

    广东省自然科学基金资助项目(31340);广东省“千百十工程”优秀人才基金资助项目(Q02052);广东省科技攻关项目(2003C101007);广州市科技计划项目(2004J1-C008)

Abstract:

In order to improve the predicted accuracy of the classification based on genetic algorithm,the fitness functions for evaluating the rule equMity are discussed in this paper.A fitness function based on a weighted sum of confidence and suppo~ is then proposed,which can substitutes the traditional fitness function based on sensitivity and specificity.Both the theoretically an alytical an d the experimental results show that the propo sed fitness function has a greater advantage in the evolutionary search of predictive association rules over the traditional one,and is helpful to the improvement of the machine learning based on genetic algorithm.

Key words: machine leaning, evolutionary learning, genetic algorithm, association rule, classification, prediction