Journal of South China University of Technology (Natural Science Edition) ›› 2013, Vol. 41 ›› Issue (5): 48-54.doi: 10.3969/j.issn.1000-565X.2013.05.008

• Electronics, Communication & Automation Technology • Previous Articles     Next Articles

Random Projection-Based Template Protection for Voiceprint-Biometric Systems

Zhu Hua-hong He Qian-hua Li Yan-xiong Zhang Xue-yuan   

  1. School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2012-05-30 Revised:2013-01-09 Online:2013-05-25 Published:2013-04-01
  • Contact: 朱华虹(1978-),女,博士生,主要从事语音信号处理与生物特征模板保护研究. E-mail:zhuhuah@gsta.com
  • About author:朱华虹(1978-),女,博士生,主要从事语音信号处理与生物特征模板保护研究.
  • Supported by:

    国家自然科学基金资助项目( 60972132, 61101160) ; 广东省自然科学基金团队项目( 9351064101000003) ; 广东省自然科学基金博士启动项目( 10451064101004651 ) ; 华南理工大学中央高校基本科研业务费专项资金资助项目( 2011ZM0029)

Abstract:

Biometric templates are vulnerable to various attacks because they involve user’s privacy.In this paper,by combining the defined formalized representation of random projection with the mainstream text-independentspeaker recognition,a template protection method based on random projection is proposed for voiceprint-biometricsystems.In the enrollment stage,voiceprint characteristic data are projected onto a random space,a Gaussian mixturemodel ( GMM) is then constructed,and the corresponding model parameters are stored as a template.In theverification stage,the voiceprint characteristics to be verified are matched with the model base data in the same randomspace.Moreover,the performance and security of the proposed method are theoretically analyzed.Experimentalresults show that suitable dimensionality reduction helps to improve the system security and approximately maintainthe performance of GMM,while the existing vector quantization method may result in a performance degradationof more than 8%,which means that the random projection is more suitable for the template protection of GMMvoiceprint-biometric systems.

Key words: voiceprint, template protection, Gaussian mixture model, random projection

CLC Number: