Journal of South China University of Technology(Natural Science Edition) ›› 2025, Vol. 53 ›› Issue (2): 1-11.doi: 10.12141/j.issn.1000-565X.240189
• Traffic Safety • Next Articles
NIU Shifeng1, TAI Yinghao1, CHANG Dongfeng1, YU Pengcheng2
Received:
2024-04-15
Online:
2025-02-25
Published:
2025-02-03
About author:
牛世峰(1982—),男,博士,教授,主要从事交通安全和驾驶人行为分析研究。E-mail: nsf530@chd.edu.cn
Supported by:
CLC Number:
NIU Shifeng, TAI Yinghao, CHANG Dongfeng, YU Pengcheng. Analysis of the Influencing Factors of the Severity of Single-Vehicle Accidents Considering Temporal Stability[J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(2): 1-11.
Table 3
Example of the single-vehicle accident independent variable encoding"
自变量 | 赋值及定义 | |
---|---|---|
驾驶人特性 | 性别 | 0—男,1—女(X1) |
年龄 | 1—≤30岁(X2),2—30~60岁(X3),3—≥60岁(*1)) | |
事故责任 | 1—全责(X4),0—非全责 | |
车辆特性 | 车辆类别 | 1—客车(X5),2—摩托车(X6),3—自行车(*),4—货车(X7) |
车辆安全状况 | 0—正常,1—非正常(X8) | |
车辆行车状态 | 0—直行,1—非直行(X9) | |
车辆前照灯状态 | 0—打开,1—未打开(X10) | |
环境特性 | 天气 | 1—晴(X11),2—雨雪(*),3—大风(X12) |
能见度 | 1—≤50 m(X13),2—50~100 m(*),3—100~200 m(X14),4—≥200 m(X15) | |
路表情况 | 1—干燥(X16),0—非干燥(冰雪、潮湿、积水等) | |
照明条件 | 1—夜间无路灯能照明(X17),2—夜间有路灯照明(*),3—白天/黄昏/黎明(X18) | |
道路特性 | 路面状况 | 1—路面完好(X19),0—路面不良(凹凸、施工、塌陷) |
路面结构 | 1—沥青(X20),0—非沥青(土路、砂石等) | |
地形 | 1—山地(X21),2—平原(X22),3—丘陵(*) | |
道路物理隔离 | 1—有隔离(X23),0—无隔离 | |
道路类型 | 1—一级(X24),2—二级(*),3—三级(X25),4—四级(X26) | |
道路线形 | 1—平直(X27),2—坡路(陡坡、连续下坡) (*),3—急弯(X28),4—弯坡(X29) | |
路口路段类型 | 1—特殊路段(X30),0—普通路段 | |
碰撞特性 | 事故形态 | 1—侧翻(X31),2—乘员跌落或坠车(X32),3—撞固定物(X33),4撞非固定物(X34),5—失火或自身摺叠(*) |
交通信号方式 | 1—有控制(X35),0—无控制 | |
防护类型 | 1—有防护(X36),0—无防护 | |
时间特性 | 季度 | 1—春(*),2—夏(X37),3—秋(X38),4—冬(X39) |
星期 | 1—周一(*),2—周二(X40),3—周三(X41),4—周四(X42),5—周五(X43),6—周六(X44),7—周日(X45) | |
时段 | 1—00:00—07:59(*),2—08:00—17:59(X46),3—18:00—23:59(X47) |
Table 4
Results of the likelihood ratio test for temporal stability"
2015年 | 2016年 | 2017年 | 2018年 | 2019年 | |
---|---|---|---|---|---|
2015 | — | 320.92(24)[>99.99%] | 342.42(24)[>99.99%] | 680.50(22)[>99.99%] | 805.28(24)[>99.99%] |
2016 | 212.38(18)[>99.99%] | — | 93.44(24)[>99.99%] | 403.62(22)[>99.99%] | 549.08(24)[>99.99%] |
2017 | 229.20(18)[>99.99%] | 54.96(24)[>99.97%] | — | 350.22(22)[>99.99%] | 494.60(24)[>99.99%] |
2018 | 538.16(18)[>99.99%] | 289.86(24)[>99.99%] | 258.40(24)[>99.99%] | — | 225.60(24)[>99.99%] |
2019 | 701.52(18)[>99.99%] | 468.12(24)[>99.99%] | 425.28(24)[>99.99%] | 118.46(22)[>99.99%] | — |
Table 6
Parameter estimation of the random parameter Logit model for single-vehicle accidents in 2015—2019"
变量 | 参数估计值(Z检验值) | 变量 | 参数估计值(Z检验值) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015年 | 2016年 | 2017年 | 2018年 | 2019年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 | ||||
X46(NI)1) | 0.664***4)(3.33) | — | — | — | -0.285**(-2.06) | X10(FI) | 0.346***(2.99) | — | — | — | — | ||
X40(NI) | — | -0.433*6) | — | — | -0.451*(1.77) | X8(NI) | — | -0.608**(-2.32) | — | — | — | ||
X19(NI) | — | (-1.85) | — | — | 1.166***(3.03) | X8(FI) | — | — | 0.329**(1.96) | — | — | ||
X19(MI)2) | -0.378***(-2.98) | —7) | — | — | — | X36(NI) | — | — | 0.534***(3.06) | — | — | ||
X19(FI)3) | — | 0.347***(2.74) | — | — | — | X36(MI) | 0.478***(3.71) | — | — | — | — | ||
X23(NI) | — | — | — | 1.045***(3.04) | -0.484*(-1.95) | X33(NI) | — | — | — | -0.756**(-2.51) | -0.849***(-3.56) | ||
X23(FI) | — | — | -0.340**(-2.28) | — | — | X33(FI) | — | 0.504***(3.86) | — | — | — | ||
X30(MI) | 0.486***(3.41) | — | 0.433***(2.82) | — | 0.466***(2.81) | X33(MI) | — | — | — | — | 0.318**(2.05) | ||
X30(FI) | — | — | — | -0.386**(-2.46) | — | X32(NI) | — | 0.888***(4.36) | — | — | — | ||
X27(FI) | 1.091***(6.36) | — | 0.225*(1.79) | — | 0.464***(3.53) | X35(NI) | — | — | — | — | -1.498***(-5.18) | ||
X28(FI) | 0.548***(3.01) | — | — | — | — | X35(FI) | — | — | — | 0.350**(2.41) | — | ||
X29(FI) | 0.482***(2.65) | — | — | — | — | X11(MI) | — | -0.303**(-2.24) | — | — | — | ||
X24(MI) | — | — | -0.734***(-3.82) | — | — | X11(FI) | 0.658***(4.45) | — | — | — | — | ||
X24(NI) | 0.885***(3.84) | — | — | — | — | X12(NI) | — | — | — | — | -0.836**(-2.06) | ||
X25(MI) | — | — | -0.465***(-3.15) | -0.384**(-2.50) | — | X12(MI) | — | — | — | — | -0.544**(-2.10) | ||
X26(NI) | — | — | — | 1.126**(2.54) | — | X12(FI) | 0.639***(3.31) | — | — | — | — | ||
X26(MI) | 0.345**5)(2.26) | — | — | — | — | X14(NI) | — | 1.080***(3.44) | — | — | — | ||
X21(MI) | — | — | 0.494***(3.84) | — | — | X15(NI) | — | 1.161***(3.95) | — | — | — | ||
X22(MI) | — | — | — | -0.539***(-3.44) | — | X16(NI) | — | -0.758***(-4.50) | — | -0.666**(-2.03) | — | ||
X22(FI) | — | 0.434***(3.34) | — | — | — | X18(NI) | — | 0.600***(3.36) | 0.719***(4.25) | — | -0.360*(-1.76) | ||
X5(NI) | — | — | — | 1.041***(3.03) | 0.371*(1.78) | X2(NI) | — | — | — | 0.762**(2.56) | — | ||
X5(MI) | 1.024***(8.06) | 0.556***(3.39) | 0.566***(3.53) | — | — | X3(MI) | — | — | -0.618***(-4.91) | — | -0.346**(-2.29) | ||
X6(NI) | — | -0.715***(-2.82) | — | -1.637***(-3.63) | -1.481***(-4.92) | X4(NI) | — | -1.166***(-4.11) | -0.951***(-3.19) | — | -1.498***(-5.18) | ||
X6(FI) | — | 0.530***(3.16) | 0.751***(4.89) | — | — | X4(MI) | — | — | — | -0.419***(2.85) | -0.371**(-2.11) | ||
X7(FI) | — | — | — | — | 0.604***(3.13) | X1(MI) | — | — | — | 0.663**(2.18) | — | ||
X10(NI) | — | — | — | -0.677**(-2.42) | — | 常数(NI) | — | — | -0.994*** (-2.79) | 0.702*(1.71) | — | ||
X10(MI) | — | — | -0.272**(-2.10) | — | — | 样本观测量 | 1 681 | 1 508 | 1 523 | 1 266 | 1 227 |
Table 7
Percentage values of the average marginal effects of the injury severity model for single-vehicle accidents during 2015—2019"
变量 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
无伤 | 重伤 | 死亡 | 无伤 | 重伤 | 死亡 | 无伤 | 重伤 | 死亡 | 无伤 | 重伤 | 死亡 | 无伤 | 重伤 | 死亡 | ||
时间 特征 | 夏季 | — | — | — | -7.3 | -1.8 | 9.1 | — | ||||||||
星期二 | — | -0.6 | 0.2 | 0.4 | — | — | 0.8 | -0.2 | -0.5 | |||||||
08:00—17:59 | 3.3 | -1.2 | -2.0 | — | — | — | 1.2 | 1.9 | -3.1 | |||||||
道路 特征 | 一级公路 | 2.9 | -1.1 | 1.8 | — | 2.5 | -12.1 | 9.5 | — | — | ||||||
路面结构 | 0.8 | -3.9 | 3.1 | -1.7 | -2.6 | 4.3 | — | — | — | |||||||
三级公路 | — | — | 1.6 | -7.6 | 6.0 | 0.2 | -2.0 | 1.8 | — | |||||||
四级公路 | -0.2 | 1.4 | -1.7 | — | — | 1.5 | -0.5 | -0.9 | — | |||||||
路口路段类型 | -0.4 | 2.1 | -1.7 | — | -1.5 | 7.1 | -5.6 | 0.4 | 1.2 | -1.6 | -0.4 | 1.9 | -1.5 | |||
山地 | — | — | -1.7 | 8.1 | -6.4 | — | — | |||||||||
平原 | — | -1.0 | -2.0 | 3.1 | — | 0.4 | -2.7 | 2.3 | — | |||||||
道路物理隔离 | — | — | 2.6 | 4.4 | -7 | 3.9 | -1.3 | -2.7 | -1.5 | 0.5 | 1.1 | |||||
平直 | — | — | -1.7 | -2.9 | 4.7 | — | -1.8 | -2.7 | 4.5 | |||||||
急弯 | -0.7 | -2.0 | 2.7 | — | — | — | — | |||||||||
弯坡 | -0.7 | -1.6 | 2.3 | — | — | — | — | |||||||||
路面状况 | — | — | — | — | 11.9 | -3.5 | -8.3 | |||||||||
车辆 特征 | 客车 | -2.9 | 2.3 | 3.1 | -5.0 | 7.1 | 2.2 | -7.5 | 6.3 | 3.9 | -1.7 | 1.3 | 5.6 | -2.7 | 0.9 | 1.3 |
摩托车 | — | -0.8 | -2.4 | 3.2 | -5.8 | -9.7 | 1.5 | -0.5 | -2.6 | 3.1 | -14.1 | -9.6 | 3.7 | |||
货车 | — | — | — | — | -0.9 | -1.4 | 2.3 | |||||||||
车辆前照灯状态 | -0.9 | -2.3 | 3.1 | — | 0.9 | -4.5 | 3.5 | -1.9 | 0.6 | 1.3 | — | |||||
车辆安全状况 | — | -6.5 | 2.4 | 4.0 | -2.5 | -4.2 | 6.8 | — | — | |||||||
碰撞 特征 | 撞固定物 | — | -1.6 | -3 | 4.6 | — | -2.5 | 0.8 | 1.7 | -3.4 | 1.0 | 2.5 | ||||
防护设施类型 | -1.0 | 4.4 | -3.5 | 0.8 | 1.4 | -2.2 | 6.0 | -1.9 | -4.1 | — | — | |||||
乘员跌落或坠车 | — | 1.8 | -0.7 | -1.1 | — | — | — | |||||||||
交通信号方式 | — | — | — | -1.1 | -1.7 | 2.7 | 2.4 | -0.7 | -1.7 | |||||||
侧翻 | — | — | — | — | -0.4 | 1.9 | -1.6 | |||||||||
环境 特征 | 晴 | -2.7 | -6.6 | 9.2 | 0.8 | -3.5 | 2.7 | — | — | -3.7 | 1.1 | 2.6 | ||||
路表情况 | — | -6.2 | 2.2 | 3.9 | — | -3.8 | 1.2 | 2.5 | — | |||||||
黄昏/黎明 | — | 8.6 | -7.4 | -0.8 | 8.0 | -2.5 | -5.6 | — | 2.6 | -0.8 | -1.8 | |||||
风雾、沙尘 | -0.5 | 1.3 | 1.8 | — | — | — | -7.8 | -5.7 | 13.6 | |||||||
夜间无路灯照明 | — | 0.3 | -1.7 | 1.3 | — | — | — | |||||||||
50~100 m | — | 12.0 | -10.1 | -2.0 | — | — | 0.3 | -1.6 | 1.3 | |||||||
100~200 m | — | 11.9 | -10 | -1.9 | — | — | — | |||||||||
200 m以上 | — | 6.5 | -2.6 | -4.0 | — | — | — | |||||||||
驾驶人 特征 | 事故责任 | — | -12.8 | 4.8 | 8.0 | -10.6 | 3.3 | 7.4 | -71.2 | 17.2 | 54.0 | -16.2 | -0.6 | 16.9 | ||
性别 | — | — | — | -1.1 | 0.6 | -0.5 | — | |||||||||
≤30岁 | — | — | — | 1.7 | -0.6 | -1.2 | — | |||||||||
30~60岁 | — | — | 2.1 | -10.2 | 8.0 | — | 0.7 | -3.7 | 3.0 |
1 | CHAMPAHOM T, JOMNONKWAO S, WATTHANA-KLANG D,et al .Applying hierarchical logistic models to compare urban and rural roadway modeling of severity of rear-end veh-icular crashes[J].Accident Analysis & Prevention,2020,141:105537/1-13. |
2 | WU Q, ZHANG G, ZHU X,et al .Analysis of driver injury severity in single-vehicle crashes on rural and urban roadways[J].Accident Analysis & Prevention,2016,94(9):35-45. |
3 | 薛刚 .考虑驾驶员道路熟悉程度的山区公路单车事故影响因素研究[D].广州:华南理工大学,2021. |
4 | 杨慧敏,石琴,陈一锴,等 .基于混合聚类的农村公路单车事故影响因素分析[J].中国安全科学学报,2020,30(8):129-136. |
YANG Huimin, SHI Qin, CHEN Yikai,et al .Influencing factors for single vehicle accidents on rural highways based on hybrid clustering approach[J].China Safety Science Journal,2020,30(8):129-136. | |
5 | 朱守胜 .基于事故树分析的营运客车交通安全风险研究[D].西安:长安大学,2016. |
6 | FOUNTAS G, ANASTASOPOULOS P, MANNERING F .Analysis of vehicle accident-injury severities:A comparison of segment- versus accident-based latent class ordered probit models with class-probability functions[J].Analytic Methods in Accident Research,2018,18(2):15-32. |
7 | 顾宏艳,沈金星,于淼,等 .公交车单车事故严重程度影响因素分析[J].科学技术与工程,2021,21(33):14401-14407. |
GU Hongyan, SHEN Jinxing, YU Miao,et al .Analysis of factors influencing the severity of single-vehicle accidents in buses[J].Science,Technology and Engineering,2021,21(33):14401-14407. | |
8 | 胡骥,闫章存,卢小钊,等 .基于有序Logit与Probit模型的交通事故严重性影响因素分析[J].安全与环境学报,2018,18(3):836-843. |
HU Ji, YAN Zhangcun, LU Xiaozhao,et al .Analysis of the factors affecting the severity of traffic accidents based on the orderly Logit and Probit model[J].Journal of Safety and Environment,2018,18(3):836-843. | |
9 | AL-BDAIRI N S S, HERNANDEZ S .An empirical analysis of run-off-road injury severity crashes involving large trucks[J].Accident Analysis & Prevention,2017,102(5):93-100. |
10 | 杨慧敏 .考虑数据异质性的农村公路单车事故严重度影响因素研究[D].合肥:合肥工业大学,2020. |
11 | YU M, MA C, SHEN J .Temporal stability of driver injury severity in single-vehicle roadway departure crashes:A random thresholds random parameters hierarchical ordered probit approach[J].Analytic Methods in Accident Research,2021,29(1):100144/1-13. |
12 | YAN X, HE J, WU G,et al .Modeling the temporal relationship between contributing factors and injury severities in rural single-vehicle alcohol-impaired driving crashes:Insights from random parameters logit models in the means and variances[J].Traffic Injury Prevention,2022,23(6):321-326. |
13 | 马壮林,邵春福,董春娇,等 .基于累积Logistic模型的交通事故严重程度时空分析[J].中国安全科学学报,2011,21(9):94-99. |
MA Zhuanglin, SHAO Chunfu, DONG Chunjiao,et al .Spatiotemporal analysis of traffic accident severity based on the cumulative Logistic model[J].Chinese Journal of Security Science,2011,21(9):94-99. | |
14 | BEHNOOD A, MANNERING F L .The temporal stability of factors affecting driver injury severities in single-vehicle crashes:Some empirical evidence[J].Analytic Methods in Accident Research,2015,8(4):7-32. |
15 | 温惠英,张璇,曾强 .高速公路单车事故等级的影响因素分析[J].华南理工大学学报(自然科学版),2021,49(8):12-18. |
WEN Huiying, ZHANG Xuan, ZENG Qiang .Analysis of factors affecting single-vehicle accident ratings on highways[J].Journal of South China University of Technology (Natural Science Edition),2021,49(8):12-18. | |
16 | MANNERIN F L, SHANKAR V, BAHT C R .Unobserved heterogeneity and the statistical analysis of highway accident data[J].Analytic Methods in Accident Research,2016,11(3):1-16. |
17 | RUSLI R, HAQUE M M, SAIFUZZAMAN M, KING M .Crash severity along rural mount-ainous highways in Malaysia:An application of a combined decision tree and logistic regression model[J].Journal of Crash Prevention and Injury Control,2018,19(7):741-748 |
18 | JALAYER M, SHABANPOUR R, POUR-ROUHOLAMIN M,et al .Wrong-way driving crashes:a random-parameters ordered probit analysis of injury severity[J].Accident Analysis & Prevention,2018,117(8):128-135. |
19 | 马艳丽 .驾驶员驾驶特性与道路交通安全对策研究[D].哈尔滨:哈尔滨工业大学,2007. |
[1] | ZHANG Yunchao, HUANG Jianling, LI Yongxing, et al. Online Driving Style Recognition Method Considering Lane-Changing Game [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(4): 126-137. |
[2] | WANG Yonggang, CHEN Junxian, ZHENG Shaoya, et al. Analysis and Prediction of Rear-End Conflicts on Road Sharp Curves [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(4): 80-87. |
[3] | YANG Yang, HU Yanran, YUAN Zhenzhou, et al. Analysis on Propagation of Spatio-Temporal Dynamic Effects Towards Freeway Traffic Crash [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(1): 123-133. |
[4] | HU Yucong, WEI Hu, ZENG Qiang . Analysis of Freeway Crash Severity Based on Spatial Generalized Ordered Probit Model [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(1): 114-122. |
[5] | WEN Huiying, LI Qiuling, ZHAO Sheng. Research on Spatiotemporal Characteristic and Risk of Lane-Changing Behaviors of Large Vehicles in Expressway Merging Area [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(5): 11-21. |
[6] | LAN Fengchong, ZHANG Yue, CHEN Jiqing, et al. Correlation Analysis and Prediction of Pedestrian Casualty Risk in Car-Pedestrian Collision Accident [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(5): 1-10. |
[7] | LU Yue FU Xinsha. Analysis of Urban Landscape and Traffic Safety Based on Street View Images [J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(10): 22-30. |
[8] | MA Xinlu, FAN Bo, CHEN Shiao, et al. Evaluation and Analysis Model for Freeways Crash Risk Based on Real-Time Traffic Flow [J]. Journal of South China University of Technology(Natural Science Edition), 2021, 49(8): 19-25,34. |
[9] | WEN Huiying ZHANG Xuan ZENG Qiang. Influence Factor Analysis of Freeway Single-Vehicle Crash Severity [J]. Journal of South China University of Technology(Natural Science Edition), 2021, 49(8): 12-18. |
[10] |
WEN Huiying SUN Jiaren ZENG Qiang ZHANG Xuan .
Quantitative Estimation on the Safety Effect of Traffic Composition on Freeways
|
[11] | Ma Ming-lei Ma Ru-jin Chen Ai-rong. Occurrence Probability Model of Bridge Fires Caused by Vehicles [J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(12): 133-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||