HU Guanghua, OU Meitong, LI Zhendong. Multi-Object Recognition and 6-DoF Pose Estimation Based on Synthetic Datasets[J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(4): 42-50.
WANG Gao, CHEN Xiaohong, LIU Ning,et al .A robot grasping policy based on viewpoint selection experience enhancement algorithm[J].Journal of South China University of Technology (Natural Science Edition),2022,50(9):126-137.
3
HINTERSTOISSER S, LEPETIT V, ILIC S,et al .Model based training,detection and pose estimation of texture-less 3D objects in heavily cluttered scenes[C]∥Proceedings of the 11th Asian Conference on Computer Vision.Berlin/Heidelberg:Springer,2013:548-562.
4
DROST B, ULRICH M, NAVAB N,et al .Model globally,match locally:efficient and robust 3D object recognition[C]∥ Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Francisco:IEEE,2010:998-1005.
5
PENG S, LIU Y, HUANG Q,et al .PVNet:pixel-wise voting network for 6DoF pose estimation[C]∥ Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:4561-4570.
6
HE Y, SUN W, HUANG H,et al .PVN3D:a deep point-wise 3D keypoints voting network for 6DoF pose estimation[C]∥ Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:11632-11641.
7
XIANG Y, SCHMIDT T, NARAYANAN V,et al .PoseCNN:a convolutional neural network for 6D object pose estimation in cluttered scenes[EB/OL].(2017-11-01)[2023-04-22]..
8
WANG C, XU D, ZHU Y,et al .DenseFusion:6D object pose estimation by iterative dense fusion[C]∥Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:3343-3352.
9
MO N, GAN W, YOKOYA N,et al .E S6D:a computation efficient and symmetry-aware 6D pose regression framework[C]∥ Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:6718-6727.
10
HAGELSKJÆR F, BUCH A G .Bridging the reality gap for pose estimation networks using sensor-based domain randomization[C]∥ Proceedings of 2021 IEEE/CVF International Conference on Computer Vision Workshops.Montreal:IEEE,2021:935-944.
11
RAMBACH J, DENG C, PAGANI A,et al .Learning 6DoF object poses from synthetic single channel images[C]∥ Proceedings of 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct.Munich:IEEE,2018:164-169.
12
HINTERSTOISSER S, PAULY O, HEIBEL H,et al .An annotation saved is an annotation earned:using fully synthetic training for object detection[C]∥ Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshops.Seoul:IEEE,2019:2787-2796.
13
NOGUES F C, HUIE A, DASGUPTA S .Object detection using domain randomization and generative adversarial refinement of synthetic images[EB/OL].(2018-05-30)[2023-05-05]..
14
DENNINGER M, SUNDERMEYER M, WINKELBAUER D,et al .BlenderProc[EB/OL].(2019-10-25)[2023-04-12]..
15
ZHU J Y, PARK T, ISOLA P,et al .Unpaired image-to-image translation using cycle-consistent adversarial networks[C]∥ Proceedings of 2017 IEEE International Conference on Computer Vision.Venice:IEEE,2017:2223-2232.
16
WANG C Y, BOCHKOVSKIY A, LIAO H Y M .YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]∥ Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver:IEEE,2023:7464-7475.
17
GONZALEZ A .Measurement of areas on a sphere using Fibonacci and latitude-longitude lattices[J].Mathematical Geosciences,2010,42(1):49-64.
18
HODAŇ T, MATAS J, OBDRŽÁLEK Š .On evaluation of 6D object pose estimation[C]∥ Proceedings of Computer Vision-ECCV 2016 Workshops.Amsterdam:Springer,2016:606-619.