| [1] |
马晓亮,高洁,刘英,等 .基于意图理解驱动的客服知识推荐大模型构建[J].华南理工大学学报(自然科学版),2025,53(3):40-49.
|
|
MA Xiaoliang, GAO Jie, LIU Ying,et al .Customer Service knowledge recommendation large model construction driven by intent understanding[J].Journal of South China University of Technology (Natural Science Edition),2025,53(3):40-49.
|
| [2] |
LEE H, HWANG D, MIN K,et al .Towards validating long-term user feedbacks in interactive recommendation systems[C]∥ Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.Madrid:ACM,2022:2607-2611.
|
| [3] |
LI L H, CHU W, LANGFORD J,et al .A contextual-bandit approach to personalized news article recommendation[C]∥ Proceedings of the 19th International Conference on World Wide Web.Raleigh:ACM,2010:661-670.
|
| [4] |
CHAPELLE O, LI L H .An empirical evaluation of thompson sampling[J].Advances in Neural Information Processing Systems,2011:2249-2257.
|
| [5] |
ZHAO X X, ZHANG W N, WANG J .Interactive collaborative filtering[C]∥ Proceedings of the 22nd ACM International Conference on Information & Knowledge Management.San Francisco:ACM,2013:1411-1420.
|
| [6] |
CHEN H K, DAI X Y, CAI H,et al .Large-scale interactive recommendation with tree-structured policy gradient[C]∥ Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence.Honolulu:AAAI,2019:3312-3320.
|
| [7] |
CHEN M M, BEUTEL A, COVINGTON P,et al .Top-k off-policy correction for a REINFORCE recommender system[C]∥ Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining.Melbourne:ACM,2019:456-464.
|
| [8] |
LIU F, TANG R M, LI X T,et al .Deep reinforcement learning based recommendation with explicit user-item interactions modeling[EB/OL].(2019-10-29)[2024-03-01]..
|
| [9] |
ZOU L X, XIA L, GU Y L,et al .Neural interactive collaborative filtering[C]∥ Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2020:749-758.
|
| [10] |
ZHAO X Y, ZHANG L, DING Z Y,et al .Recommendations with negative feedback via pairwise deep reinforcement learning[C]∥ Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.London:ACM,2018:1040-1048.
|
| [11] |
ZHOU S J, DAI X Y, CHEN H N,et al .Interactive recommender system via knowledge graph-enhanced reinforcement learning[C]∥ Proceedings of the 43rd International ACM SIGIR Conference on Research and Development In Information Retrieval.New York:ACM,2020:179-188.
|
| [12] |
CHEN T, KORNBLITH S, NOROUZI M,et al .A simple framework for contrastive learning of visual representations[C]∥ Proceedings of the 37th International Conference on Machine Learning.[S.l.]:ML Research Press,2020:1597-1607.
|
| [13] |
HE K M, FAN H Q, WU Y X,et al .Momentum contrast for unsupervised visual representation learning [C]∥ Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:9729-9738.
|
| [14] |
CHENG C, YANG H, LYU M R,et al .Where you like to go next:successive point-of-interest recommendation[C]∥ Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence.Beijing:AAAI,2013:2605-2611.
|
| [15] |
JI J C, ZHANG B J, YU J C,et al .Relationship-aware contrastive learning for social recommendations [J].Information Sciences,2023,629:778-797.
|
| [16] |
XU C, ZHANG Y, CHEN H Y,et al .A fairness-aware graph contrastive learning recommender framework for social tagging systems[J].Information Sciences,2023,640:119064/1-14.
|
| [17] |
ZHOU K, WANG H, ZHAO W X,et al .S3-Rec:self-supervised learning for sequential recommendation with mutual information maximization[C]∥ Proceedings of the 29th ACM International Conference on Information & Knowledge Management.New York:ACM,2020: 1893-1902.
|
| [18] |
WU J C, WANG X, FENG F L,et al .Self-supervised graph learning for recommendation[C]∥ Proceedings of the 44th international ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2021:726-735.
|
| [19] |
XIE X, SUN F, LIU Z Y,et al .Contrastive learning for sequential recommendation[C]∥ Proceedings of 2022 IEEE the 38th International Conference on Data Engineering.Kuala Lumpur:IEEE,2022:1259-1273.
|
| [20] |
PHAM P, NGUYEN L T T, NGUYEN N T,et al .A hierarchical fused fuzzy deep neural network with heterogeneous network embedding for recommendation [J].Information Sciences,2023,620:105-124.
|
| [21] |
SHI C, LI Y T, ZHANG J W,et al .A survey of heterogeneous information network analysis[J].IEEE Transactions on Knowledge and Data Engineering,2016,29(1):17-37.
|
| [22] |
FENG W, WANG J Y .Incorporating heterogeneous information for personalized tag recommendation in social tagging systems[C]∥ Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Beijing:ACM,2012:1276-1284.
|
| [23] |
蔡晓东,曾志杨 .AFGSRec:一种自适应融合全局协同特征的社交推荐模型[J].华南理工大学学报(自然科学版),2022,50(12):71-79.
|
|
CAI Xiaodong, ZENG Zhiyang .AFGSRec:a social recommendation model based on adaptive fusion of global collaborative features[J].Journal of South China University of Technology (Natural Science Edition),2022,50(12):71-79.
|
| [24] |
SHI C, ZHANG Z Q, LUO P,et al .Semantic path based personalized recommendation on weighted heterogeneous information networks[C]∥ Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.Melbourne:ACM,2015:453-462.
|
| [25] |
FRANÇOIS-LAVET V, HENDERSON P, ISLAM R,et al .An introduction to deep reinforcement learning[J].Foundations and Trends in Machine Learning,2018,11(3/4):219-354.
|
| [26] |
HE X N, LIAO L Z, ZHANG H W,et al .Neural collaborative filtering[C]∥ Proceedings of the 26th International Conference on World Wide Web.Perth:ACM,2017:173-182.
|
| [27] |
RENDLE S, FREUDENTHALER C, GANTNER Z,et al .BPR:Bayesian personalized ranking from implicit feedback[C]∥ Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.Montreal:AUAI Press,2009:452-461.
|
| [28] |
KINGMA D P, BA J .Adam:a method for stochastic optimization[EB/OL].(2017-01-30)[2024-03-01]..
|