华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (5): 139-146.doi: 10.12141/j.issn.1000-565X.240542

• 能源、动力与电气工程 • 上一篇    

基于融合Transformer模型的配电线路激光点云分割算法

代洲1, 刘燕1, 毛先胤2, 虢韬3, 徐梁刚3, 程桂仙4   

  1. 1.贵州财经大学 管理科学与工程学院,贵州 贵阳 550025
    2.贵州电网有限责任公司 电力科学研究院,贵州 贵阳 550002
    3.贵州电网有限责任公司 智能作业中心,贵州 贵阳 550025
    4.贵州师范大学 物理与电子科学学院,贵州 贵阳 550025
  • 收稿日期:2024-11-08 出版日期:2025-05-25 发布日期:2024-12-06
  • 通信作者: 程桂仙(1986—),女,博士,副教授,主要从事人工智能、无线传感网络、电力线通信等研究。 E-mail:chgx86@126.com
  • 作者简介:代洲(1987—),男,博士,副教授,主要从事电力装备制造质量智能化评价与预警、人工智能在电气工程中的应用、电网供应链韧性等研究。E-mail: daizhou87@qq.com
  • 基金资助:
    国家自然科学基金项目(62361012);贵州省高等学校创新团队项目(黔教技[2023]064号)

Fusion Transformer Model-Based Segmentation Algorithm for Laser Point Cloud of Distribution Lines

DAI Zhou1, LIU Yan1, MAO Xianyin2, GUO Tao3, XU Lianggang3, CHENG Guixian4   

  1. 1.School of Management Science and Engineering,Guizhou University of Finance and Economics,Guiyang 550025,Guizhou,China
    2.Electric Power Research Institute of Guizhou Power Grid Co. ,Ltd. ,Guiyang 550002,Guizhou,China
    3.Intelligent Operations Center of Guizhou Power Grid Co. ,Ltd. ,Guiyang 550025,Guizhou,China
    4.School of Physics and Electronic Science,Guizhou Normal University,Guiyang 550025,Guizhou,China
  • Received:2024-11-08 Online:2025-05-25 Published:2024-12-06
  • Contact: 程桂仙(1986—),女,博士,副教授,主要从事人工智能、无线传感网络、电力线通信等研究。 E-mail:chgx86@126.com
  • About author:代洲(1987—),男,博士,副教授,主要从事电力装备制造质量智能化评价与预警、人工智能在电气工程中的应用、电网供应链韧性等研究。E-mail: daizhou87@qq.com
  • Supported by:
    the National Natural Science Foundation of China(62361012)

摘要:

激光点云模型为后续的配电线路检测与管理提供了重要的支撑,现阶段大多数配电通道都已经构建了相应的激光点云模型。由于点云模型数量的增加,有效提取关键部件(如导线、绝缘子等)的位置信息成为了一项重要任务。为了进一步提升对点云模型中配电线路、杆塔、绝缘子等关键部件分割、提取的精准性和效率,该文提出一种基于融合Transformer模型的配电线路激光点云分割算法。考虑到配电线路点云中需要更为关注细节特征的影响,构建了一种双通道平行架构的特征提取模块用于提取高频和低频特征,其中低频特征通过平均池化和基于融合Transformer模型的特征提取器进行处理,高频特征通过最大池化和包含卷积层的多层感知机(MLP)模块进行处理;将两个通道获取的特征向量进行融合,以提升对细节特征的提取能力。此外,考虑到MLP模块在特征处理方面的能力,将融合后特征再次输入MLP模块中作进一步处理,实现了对点云目标的准确分割。该文还开展了大量的实验,验证了所提算法的准确性和有效性。该算法具有提高无人机巡检精度、增强自动化水平、提升鲁棒性、融合多源数据和降低巡检成本等多方面的潜在优势。

关键词: Transformer模型, 配电线路通道, 特征融合, 激光点云, 神经网络

Abstract:

As laser point cloud models are crucial for distribution line inspection and management, most distribution channels have constructed laser point cloud models at present. With the increase of the number of models, extracting key component locations (e.g., conductors, insulators) becomes vital. In order to enhance the accuracy and efficiency of segmenting key components such as lines, towers and insulators, this paper presents a segmentation algorithm for laser point cloud of distribution lines based on a fusion Transformer model. Given the need for detailed features in the point clouds of distribution lines, a dual-channel parallel feature extraction module is designed to capture high-frequency and low-frequency features. The low-frequency features are processed via average pooling and a fusion Transformer-based extractor, while the high-frequency features are handled through max pooling and a multi-layer perceptron (MLP) module with convolutional layers. The feature vectors from both channels are then fused to improve the ability of detail feature extraction. Additionally, the fused features are fed back into the MLP module for further refinement, achieving precise point cloud target segmentation. Extensive experiments demonstrate the accuracy and effectiveness of the proposed algorithm. It has potential advantages in many aspects, such as improving the inspection accuracy of unmanned aerial vehicles, enhancing the level of automation, improving the robustness, integrating multi-source data and reducing inspection costs.

Key words: Transformer model, distribution line channel, feature fusion, laser point cloud, neural network

中图分类号: