华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (5): 139-146.doi: 10.12141/j.issn.1000-565X.240542

• 能源、动力与电气工程 • 上一篇    

基于融合Transformer的配电线路激光点云分割算法

代洲1  刘燕1  毛先胤 程桂仙     

  1. 1.贵州财经大学管理科学与工程学院,贵州 贵阳 550025;
    2.贵州电网有限责任公司电力科学研究院,贵州 贵阳 550002;
    3.贵州师范大学物理与电子科学学院,贵州 贵阳 550025
  • 出版日期:2025-05-25 发布日期:2024-12-06

Fusion Transformer based Segmentation Algorithm for Laser Point Cloud of Distribution Lines

DAI Zhou1  LIU Yan1  MAO Xianying2  CHENG Guixian3   

  1. 1.School of Management Science and Engineering, Guizhou University of Finance and Economics, Guiyang 550025, Guizhou, China;

    2. Electric Power Research Institute of Guizhou Power Grid Co.,Ltd., Guiyang 550000,Guizhou, China ;

    3. School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, Guizhou, China

  • Online:2025-05-25 Published:2024-12-06

摘要:

激光点云模型为后续的配电线路检测与管理提供了重要的支撑,现阶段大多配电通道都已经构建了相应的激光点云模型。由于点云模型数量的增加,有效的提取关键部位(导线、绝缘子等)的位置信息变成了一项重要内容。为了进一步提升对点云模型中配电线路、杆塔、绝缘子等关键模块分割、提取的精准性和效率,本文提出一种基于融合Transformer模型的配电线路激光点云分割算法。其中,考虑到配电线路点云中需要更为关注细节特征的影响,构建了一种双通道平行架构的特征提取模块用于分别提取高频和低频特征,其中低频特征通过平均池化和基于融合Transformer模型的特征提取器进行处理,高频特征用最大池化和包含卷积层的多层感知机(MLP)模块进行处理,将两个通道获取的特征向量进行融合,以提升对细节特征的提取能力。此外,考虑MLP模块在特征处理的能力,在特征提取模块中加入MLP对特征进行进一步处理,实现对点云目标的准确分割。最后,本文通过大量的实验验证了所提出算法的准确性和科学性。本文提出的算法在无人机巡检中具有提高精度、增强自动化、提升鲁棒性、融合多源数据和降低成本等多方面的潜在优势。

关键词: Transformer, 配电线路通道, 特征融合, 激光点云, 神经网络

Abstract:

This paper proposes a laser point cloud segmentation algorithm for power distribution lines based on a fused Transformer, aiming to enhance the precision and efficiency of segmenting and extracting key modules such as power lines, towers, and insulators. A dual-channel parallel architecture feature extraction module is constructed to separately capture high-frequency and low-frequency features, with low-frequency features using average pooling and a fused Transformer extractor, and high-frequency features using max pooling and an MLP module that includes convolutional layers. The feature vectors from both channels are fused to enhance detail extraction. Incorporating an MLP module further refines feature processing for accurate point cloud target segmentation. Extensive experiments validate the algorithm’s accuracy.The algorithm proposed in this paper has the potential advantages of improving accuracy, enhancing automation, increasing robustness, integrating multi-source data, and reducing costs in UAV inspection.

Key words: Transformer, distribution lines channel, feature fusion, laser point cloud, neural network