1 |
HUANG R, XIA J, ZHANG B,et al .Compound fault diagnosis for rotating machinery:state-of-the-art,cha-llenges,and opportunities[J].Journal of Dynamics,Monitoring and Diagnostics,2023,2(1):13-29.
|
2 |
WANG Q, XU F .A novel rolling bearing fault diagnosis method based on adaptive denoising convolutional neural network under noise background[J].Measurement,2023,218:113209/1-13.
|
3 |
陈新度,扶治森,吴智恒,等 .基于多头卷积和差分自注意力的小样本故障诊断方法[J].华南理工大学学报(自然科学版),2023,51(7):21-33.
|
|
CHEN Xindu, FU Zhisen, WU Zhiheng,et al .Small-sample fault diagnosis method based on multi-head convolution and differential self-attention[J].Journal of South China University of Technology(Natural Science Edition),2023,51(7):21-33.
|
4 |
NING S, WANG Y, CAI W,et al .Research on intelligent fault diagnosis of rolling bearing based on improved ShufflenetV2-LSTM[J].Journal of Sensors,2022,2022:8522206/1-13.
|
5 |
陈仁祥,唐林林,胡小林,等 .不同转速下基于深度注意力迁移学习的滚动轴承故障诊断方法[J].振动与冲击,2022,41(12):95-101,195.
|
|
CHEN Renxiang, TANG Linlin, HU Xiaolin,et al .A rolling bearing fault diagnosis method based on deep attention transfer learning at different rotations[J].Journal of Vibration and Shock,2022,41(12):95-101,195.
|
6 |
ZHANG X, ZHAO B, LIN Y .Machine learning based bearing fault diagnosis using the Case Western Reserve University data:a review[J].IEEE Access,2021,9:155598-155608.
|
7 |
ZHANG J, ZHANG K, AN Y,et al .An integrated multitasking intelligent bearing fault diagnosis scheme based on representation learning under imbalanced sample condition[J].IEEE Transactions on Neural Networks and Learning Systems,2024,35(5):6231-6242.
|
8 |
REN C, JIANG B, LU N .Task adaptation meta learning for few-shot fault diagnosis under multiple working conditions[C]∥ Proceedings of 2023 the 6th International Symposium on Autonomous Systems.Nanjing:IEEE,2023:10164461/1-5.
|
9 |
INDIRA V, VASANTHAKUMARI R, SUGUMARAN V .Minimum sample size determination of vibration signals in machine learning approach to fault diagnosis using power analysis[J].Expert Systems with Applications,2010,37(12):8650-8658.
|
10 |
LIU X, HUANG H, XIANG J .A personalized diagnosis method to detect faults in a bearing based on acceleration sensors and an FEM simulation driving support vector machine[J].Sensors,2020,20(2):420/1-13.
|
11 |
LIU X, HUANG H, XIANG J .A personalized diagnosis method to detect faults in gears using numerical simulation and extreme learning machine[J].Knowledge-Based Systems,2020,195:105653/1-13.
|
12 |
HU Y, XIONG Q, ZHU Q,et al .Few-shot transfer learning with attention for intelligent fault diagnosis of bearing[J].Journal of Mechanical Science and Technology,2022,36(12):6181-6192.
|
13 |
CHEN J, HU W, CAO D,et al .A meta-learning method for electric machine bearing fault diagnosis under varying working conditions with limited data[J].IEEE Transactions on Industrial Informatics,2022,19(3):2552-2564.
|
14 |
XIA P C, HUANG Y X, WANG Y X,et al .Augmentation-based discriminative meta-learning for cross-machine few-shot fault diagnosis[J].Science China Technological Sciences,2023,66(6):1698-1716.
|
15 |
HAN Y, LI B, HUANG Y,et al .Imbalanced fault classification of rolling bearing based on an improved oversampling method[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2023,45(4):223/1-11.
|
16 |
YANG J, LIU J, XIE J,et al .Conditional GAN and 2-D CNN for bearing fault diagnosis with small samples[J].IEEE Transactions on Instrumentation and Measurement,2021,70:3525712/1-12.
|
17 |
FAN H, MA J, ZHANG X,et al .Intelligent data expansion approach of vibration gray texture images of rolling bearing based on improved WGAN-GP[J].Advances in Mechanical Engineering,2022,14(3):1-11.
|
18 |
ARJOVSKY M, CHINTALA S, BOTTOU L .Wasserstein generative adversarial networks[C]∥ Proceedings of the 34th International Conference on Machine Learning.Sydney:MLResearchPress,2017:214-223.
|
19 |
WANG Z, OATES T .Imaging time-series to improve classification and imputation[EB/OL].(2015-06-01)[2023-11-27]..
|
20 |
THANARAJ K P, PARVATHAVARTHINI B, TANIK U J,et al .Implementation of deep neural networks to classify EEG signals using gramian angular summation field for epilepsy diagnosis[EB/OL].(2020-05-08)[2023-11-27]..
|
21 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M,et al .Generative adversarial nets[C]∥ Proceedings of the 27th International Conference on Neural Information Processing Systems.Cambridge:MIT Press,2014:2672-2680.
|
22 |
MIRZA M, OSINDERO S .Conditional generative adversarial nets[EB/OL]. (2014-11-06)[2023-11-27]..
|
23 |
GULRAJANI I, AHMED F, ARJOVSKY M,et al .Improved training of Wasserstein GANs[C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems.Red Hook:Curran Associates Inc.,2017:5769-5779.
|
24 |
WOO S, PARK J, LEE J Y,et al .CBAM:convolutional block attention module[C]∥ Proceedings of the 15th European Conference on Computer Vision.Munich:Springer,2018:3-19.
|
25 |
HOU Q, ZHOU D, FENG J .Coordinate attention for efficient mobile network design[C]∥ Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Taipei:IEEE,2021:13713-13722.
|
26 |
CHEN H, GU J, ZHANG Z .Attention in attention network for image super-resolution[EB/OL]. (2021-04-19)[2023-11-27]..
|
27 |
ZHANG S, YE F, WANG B,et al .Few-shot bearing fault diagnosis based on model-agnostic meta-learning [J].IEEE Transactions on Industry Applications,2021,57(5):4754-4764.
|
28 |
LU N, HU H, YIN T,et al .Transfer relation network for fault diagnosis of rotating machinery with small data[J].IEEE Transactions on Cybernetics,2021,52(11):11927-11941.
|
29 |
LI T, SUN C, LI S,et al .Explainable graph wavelet denoising network for intelligent fault diagnosis[J].IEEE Transactions on Neural Networks and Learning Systems,2022,35(5):8535-8548.
|
30 |
WANG L, ZHANG L, QI X,et al .Deep attention-based imbalanced image classification[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(8):3320-3330.
|