华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (5): 66-81.doi: 10.12141/j.issn.1000-565X.240356

• 计算机科学与技术 • 上一篇    

基于SD-ISSA-DALSTM的交通运输业碳排放预测研究

王庆荣1  王俊杰1  朱昌锋2  郝福乐1   

  1. 1.兰州交通大学 电子与信息工程学院,甘肃 兰州 730070

    2.兰州交通大学 交通运输学院,甘肃 兰州 730070


  • 出版日期:2025-05-25 发布日期:2024-11-12

Research on Carbon Emission Forecasting in Transportation Industry Based on SD-ISSA-DALSTM

WANG Qingrong1  WANG Junjie1  ZHU Changfeng2  HAO Fule1

#br#   

  1. 1.School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;

    2.School of Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

  • Online:2025-05-25 Published:2024-11-12

摘要:

针对交通运输业碳排放数据序列存在波动性和随机性较强,预测精度较低的问题,提出了一种结合二次分解(SD)、双重注意力机制(DA)、改进麻雀搜索算法(ISSA)和LSTM网络的交通碳排放预测模型。首先,引入CEEMDAN将交通碳排放数据序列分解为不同频率的模态分量,再利用样本熵(SE)对各分量复杂度进行量化,并利用VMD对熵值最高的分量进行二次分解,进一步弱化交通碳排放数据序列的波动性和非线性;其次,为挖掘交通碳排放量与其影响因素间的关联性,在LSTM模型的输入端加入特征注意力机制,突出关键输入特征;同时在输出端加入时间注意力机制,提取关键历史时刻信息;最后,结合Circle混沌映射、动态惯性权重因子和混合变异算子策略改进SSA算法,并对各分量分别建立ISSA-DALSTM模型,接着对各分量预测值进行重构。测算中国交通运输业1990-2019年的碳排放数据,以此对模型进行验证,结果表明:所提模型的RMSE、MAE、MAPE分别为5.3088、3.5661、0.4439,均优于其他对比模型,验证了所提模型的有效性。

关键词: 交通运输业, 碳排放预测, 二次分解, 双重注意力机制, 改进麻雀搜索算法

Abstract:

Aiming at the problem of high volatility and stochasticity and low prediction accuracy in the carbon emission data series of transportation industry, a transportation carbon emission prediction model combining the quadratic decomposition (SD), dual attention mechanism (DA), improved sparrow search algorithm (ISSA) and LSTM network is proposed. First, CEEMDAN is introduced to decompose the transportation carbon emission data series into modal components with different frequencies, and then the sample entropy (SE) is used to quantify the complexity of each component, and the secondary decomposition (SD) is performed on the component with the highest entropy value by using VMD, which further weakens the volatility and nonlinearity of the transportation carbon emission data series; second, in order to tap the correlation between the transportation carbon emission and its influencing factors, a feature-attention mechanism is added to the inputs of the LSTM Secondly, in order to explore the correlation between transportation carbon emissions and its influencing factors, a feature attention mechanism is added to the input side of the model to highlight the key input features; meanwhile, a temporal attention mechanism is added to the output side to extract the key historical moments; finally, the SSA algorithm is improved by combining the Circle chaotic mapping, dynamic inertia weight factor and mixed variance operator strategies, and the ISSA-DALSTM models are established for each component separately, and then reconstructed for the predicted values of each component. The carbon emission data of China's transportation industry from 1990 to 2019 are measured to validate the model, and the results show that the RMSE, MAE, and MAPE of the proposed model are 5.3088, 3.5661, and 0.4439, respectively, which are better than those of other comparative models, and the validity of the proposed model is verified.

Key words: transportation industry, carbon emission prediction, secondary decomposition, dual attention mechanism, improved sparrow search algorithm