华南理工大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (10): 62-69.doi: 10.12141/j.issn.1000-565X.220003

所属专题: 2022年电子、通信与自动控制

• 电子、通信与自动控制 • 上一篇    下一篇

基于位置跟踪器的机器人快速示教方法

史步海1 欧华海1 郭清达2   

  1. 1.华南理工大学 自动化科学与工程学院,广东 广州 510640
    2.广州工业智能研究院,广东 广州 511458
  • 收稿日期:2022-01-05 出版日期:2022-10-25 发布日期:2022-05-06
  • 通信作者: 史步海(1963-),男,博士,教授,主要从事数控及机器人运动控制系统、计算机远程监控系统以及大时滞系统等研究。 E-mail:bhshi@scut.edu.cn
  • 作者简介:史步海(1963-),男,博士,教授,主要从事数控及机器人运动控制系统、计算机远程监控系统以及大时滞系统等研究。
  • 基金资助:
    广东省科技基础研究项目(2018A030321001);广州市基础与应用基础研究项目(202201010081)

A Fast Teaching Method of Robot Based on Position Tracker

SHI Buhai1 OU Huahai1 GUO Qingda2   

  1. 1.School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
    2.Guangzhou Industrial Intelligence Research Institute,Guangzhou 511458,Guangdong,China
  • Received:2022-01-05 Online:2022-10-25 Published:2022-05-06
  • Contact: 史步海(1963-),男,博士,教授,主要从事数控及机器人运动控制系统、计算机远程监控系统以及大时滞系统等研究。 E-mail:bhshi@scut.edu.cn
  • About author:史步海(1963-),男,博士,教授,主要从事数控及机器人运动控制系统、计算机远程监控系统以及大时滞系统等研究。
  • Supported by:
    Guangdong Province Science and Technology Basic Project(2018A030321001)

摘要:

针对中大型机械臂拖动示教中迟滞和难以精细化操作、控制困难等问题,提出一种基于位置跟踪器的机器人快速示教系统。首先,位置跟踪器接收端被固定在机械臂末端,对其进行坐标系数学建模;其次,分别推导了机器人基坐标系-末端坐标系和位置跟踪器发射端坐标系-接收端坐标系的变换关系,给出了采用基于四元数的求解位置跟踪器发射端坐标系与机器人基坐标系的变换关系的方法;最后,在标定完成后可将位置跟踪器接收端当成示教笔用于机器人示教工作。根据位置跟踪器接收端坐标系与机器人基座标系的变换关系即可将位置跟踪器接收端的位姿转换成机器人基坐标系下的位姿,无需拖动机器人即可快速完成机器人示教,获取路点信息;此外,位置跟踪器接收端相比机器人末端更轻便小巧。在一些需要在小范围示教场景下,使用位置跟踪器接收端进行示教工作比人工拖动机器人更加方便、高效。在验证测试中,采用大象公司的E系列工业机器人和美国Ascension公司的trakStar位置跟踪器搭建了快速示教系统,分别进行了误差实验和喷涂应用场景下的轨迹示教实验。实验结果表明,基于位置跟踪器接收端位姿计算得到的机器人末端位姿中,旋转角误差绝对值不超过0.8°,平移误差绝对值小于2.5 mm,能够满足实际的机器人快速示教需求。

关键词: 机器人, 位置跟踪器, 拖动示教, 轨迹示教

Abstract:

In order to avoid the problems of delay, low control accuracy, and difficult operation in the drag teaching of medium and large manipulators, the study proposed a fast teaching system for robots based on position tracker. Firstly, the position tracker receiver was fixed at the end of the manipulator, and the relationship between their coordinate systems was analyzed. Secondly, the study deduced the transformation relationship between the robot base coordinate system and the position tracker transmitter coordinate system, and the position relationship between the robot end coordinate system and the position tracker receiver coordinate system. A solution method based on quaternion was proposed to carry out transformation relationship between the transmitter coordinate system and the robot base coordinate system. Finally, the position tracker receiver can be used as a teaching pen for robot dragging teaching when the calibration work is done. Accodring to the transformation relationship between the robot base coordinate system and the position tracker receiver, teaching work and getting waypoint information can be completed easily and quickly by converting the pose of the receiver to the pose of the robot base coordinate system without dragging. In addition, the position tracker receiver is lighter and smaller than robot end. Using the position tracker receiver for drag teaching is more convenient and efficient than manually dragging the robot in some scenarios that require drag teaching in a small area. A fast teaching system with the Elephant E series industrial robot and the trakStar position tracker of Ascension in US was built to carry out the error experiment and the trajectory teaching experiment in spraying application. The experimental results show that the absolute of the rotation angle error of the robot end pose calculated by the position tracker’s pose is no more than 0.8°, and the absolute of the translation error is less than 2.5 mm, which can meet the actual control requirements.

Key words: robot, position tracker, drag teaching, trajectory teaching

中图分类号: