华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (5): 38-46.doi: 10.12141/j.issn.1000-565X.200470

所属专题: 2021年交通运输工程

• 交通运输工程 • 上一篇    下一篇

基于自适应近似模型的GTS模型低风阻尾板优化

胡兴军1,2 刘一尘李金成兰巍张扬辉王靖宇1†   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,吉林 长春 130012;2.吉林大学 汽车工程学院,吉林 长春 130012
  • 收稿日期:2020-08-10 修回日期:2020-11-16 出版日期:2021-05-25 发布日期:2021-04-30
  • 通信作者: 王靖宇(1976-),男,博士,副教授,主要从事汽车空气动力学研究。 E-mail:wangjy@jlu.edu.cn
  • 作者简介:胡兴军(1976-),男,教授,博士生导师,主要从事汽车空气动力学研究。E-mail:hxj@jlu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51875238)

Optimization for Low Aerodynamic Drag Boat-Tail of GTS Model Based on Adaptive Approximation Model

HU Xingjun1,2 LIU YichenLI JinchengLAN WeiZHANG YanghuiWANG Jingyu1   

  1. 1. State Key Laboratory of Automotive Simulation and Control,Jilin University, Changchun 130012,Jilin,China;
    2.College of Automotive Engineering,Jilin University,Changchun 130012,Jilin,China
  • Received:2020-08-10 Revised:2020-11-16 Online:2021-05-25 Published:2021-04-30
  • Contact: 王靖宇(1976-),男,博士,副教授,主要从事汽车空气动力学研究。 E-mail:wangjy@jlu.edu.cn
  • About author:胡兴军(1976-),男,教授,博士生导师,主要从事汽车空气动力学研究。E-mail:hxj@jlu.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(51875238)

摘要: 为解决静态近似模型所需样本量大、优化效率低的问题,基于粒子群算法(PSO)的最小二乘支持向量回归(LSSVR)自适应近似模型构建优化算法,并通过构建全局和局部自适应近似模型以减小优化算法陷入局部最优解的可能,加速收敛过程。文中将Branin函数作为测试函数,证明构建的自适应PSO-LSSVR近似模型用于单目标优化问题的有效性;将自适应PSO-LSSVR近似模型用于GTS模型低风阻尾板的快速优化上,以上尾板倾角、下尾板倾角、侧尾板倾角和尾板长度为设计变量,仅通过31组数据集样本便收敛至最优解,且近似模型预测气动阻力系数误差仅为0.18%。相比初始尾板,优化后的尾板使得GTS模型气动阻力下降9.38%,证明了自适应PSO-LSSVR近似模型优化算法对小样本快速寻优问题具有较好的可行性。

关键词: GTS模型, 气动减阻, 自适应近似模型, PSO-LSSVR算法

Abstract: To solve the problems of large sample size and low optimization efficiency of static approximation model, the least squares support vector regression (LSSVR) based adaptive approximation model with particle swarm optimization (PSO) algorithm was introduced to construct the optimization algorithm. The global and local adaptive approximation models were constructed to reduce the possibility of the optimization algorithm falling into the local optimal solution and to accelerate the convergence process. The Branin function was used as test function to prove the effectiveness of the proposed adaptive PSO-LSSVR approximation model for single-objective optimization problems. The adaptive PSO-LSSVR approximation model was applied to the rapid optimization of boat-tail of GTS model. The upper boat-tail angle, the lower boat-tail angle, the side boat-tail angle and the tail plate length were taken as design variables, and the optimal solution could be obtained only with 31 sample data sets.  And the error of aerodynamic drag coefficient predicted by the approximation model is only 0.18%. The aerodynamic drag of GTS model with optimized boat-tail is reduced by 9.38% after optimization, which proves that the adaptive PSO-LSSVR approximation model optimization method is feasible for fast optimization problem with small samples.

Key words: GTS model, aerodynamic drag reduction, adaptive approximation model, PSO-LSSVR algorithm

中图分类号: